
MA22037: Numerical Analysis

Department of Mathematical Sciences, University of Bath

2026-02-02

Contents
1 What is numerical analysis? 1

2 Interpolation 4

3 Numerical integration 13

4 Solving nonlinear equations 22

5 Numerical linear algebra 27

6 Solution of Initial-Value Problems (IVPs) 56

1 What is numerical analysis?
Much of today’s science and engineering depends on large-scale calculations performed
with computers. These calculations find solutions or approximate solutions to mathemat-
ical models and enable scientists and engineers to predict behaviours of interest. A prime
example is the weather: PDE models are used to predict the weather based on recent
observations. The accuracy of the predictions depend on many things, including the
accuracy of the numerical solution to the PDEs. In this unit, we explore the theoretical
basis for these numerical methods, especially their reliability and efficiency. The name
given to this subject is Numerical Analysis.

Numerical analysis is half theory and half practice. We want to prove that algorithms
work with rigorous mathematical analysis and to implement them. An essential part
of the course will be for you to implement and use the methods yourself. You will use
Python to do this.

1

1.1 Examples
1.1.1 Catastrophic cancellation and the quadratic-equation formula

The following formula for the two roots of a quadratic equation is well known:

x± = −b ±
√

b2 − 4ac

2a

gives the solutions x of

ax2 + bx + c = 0, for given a, b, c.

For a pure mathematician, this could be the end of the story: Python provides built-in
routines for evaluating such expressions and hence we can input a, b, c and find the roots.

It is not always so simple: computers work with finite-precision arithmetic and only store
finitely many different numbers. Any number that is too long (π,

√
2,. . . written in base

10) or too big (above 10308 or too small 10−323 on my machine) causes problems. We
focus on numbers that are too long: in Python and many other computing environments,
real numbers are stored to 16-significant figures. That is, any number with more than
16 digits (excluding the exponent) in base 10 is rounded (by chopping or choosing the
nearest) to 16 digits. Then in Python, typing import numpy as np then np.pi, we see

π is replaced by 3.141592653589793.

Of course, computers work in base 2 and the principle there is similar.

At first, this appears like a minor irritation as the error caused is so small relative to the
size of π. However, when performing long computations in finite-precision arithmetic,
the effects can accumulate to cause a catastrophic loss of accuracy. For example, consider
computing x± in the case b = 106, a = 10−3 and c = 10−3:

x± = −106 ±
√

1012 − 4 × 10−6

2 × 10−3 .

Working to 16-significant figures, the square root evaluates to ±106 because 1012 − 4 ×
10−6 = 1012 to 16 s.f. (s.f. denotes significant figures). Hence, the computed values of
the roots are xc

± = −109, 0. In fact, the exact answers are x± = −109, −10−9 (to 16 s.f.).
There are no correct digits in the xc

+. Indeed,

the absolute error in x+ is
∣∣∣x+ − xc

+

∣∣∣ ≈ 10−9,

but

the relative error in x+ is

∣∣∣x+ − xc
+

∣∣∣
|x+|

≈ 1.

2

Using the relative error, we scale the error relative to what we are trying to compute
and find the error in computing x+ is unacceptably large.

How can the quadratic-equation formula be evaluated accurately in this case? Numerical
analysis provides ways of improving algorithms so they are less sensitive to the effects of
rounding error, without the need to change computing environment. Indeed, now that
single-processor computing speed is no longer increasing dramatically, it is becoming
more important to exploit good algorithms. Sixteen figures is enough to represent
the answer and the algorithm can be adjusted to avoid the problematic cancellation
−106 +

√
1012 + neglected and find the correct answer in Python. In this case, we note

that one of the roots x± is evaluated accurately and the second root can be computed
accurately by exploiting the identity x+x− = c/a for the product of the roots.

1.1.2 Linear equations

To convince you that the previous example is not overly contrived, consider the linear
system of equations: [

ϵ 1
0 1

]
x = b, b :=

[
1
1

]
for a known small number 0 < ϵ ≪ 1. We are interested in determining x ∈ R2 and it is
easy to show that

x =
[
0
1

]
.

Imagine that there has been rounding error and the vector b is actually stored as
[1 + δ, 1]T (the T denotes transpose):[

ϵ 1
0 1

]
x = b, b :=

[
1 + δ

1

]
. (1)

Again solving the linear system, we find

x =
[
δ/ϵ
1

]
.

In the case that 0 < ϵ ≪ δ (ϵ is much smaller than δ), there is a large change to
the solution x. This system and its solution x is highly sensitive to small changes in
input data (as modelled by δ). This is a simple example of an ill-conditioned system of
equations and these arise widely in mathematical modelling and are particularly hard
to solve accurately using numerical methods. The perturbation represented by δ always
occurs in numerical simulations due to rounding error.

In contrast to the quadratic-equation example, the ill-conditioning here is fundamental to
the underlying equations and is not a consequence of the method of solution. Numerical
analysis can help identify numerically stable algorithms that are less susceptible to the

3

effects of rounding error, but, if there is an instability in the underlying model, even
a good algorithm will produce wrong answers. This is why well posedness (existence,
uniqueness, and continuity of solutions with respect to parameters) is studied in modules
on differential equations.

2 Interpolation
Problem. Suppose that a function f : [a, b] → R is specified only by its values f(xi) at
the N + 1 distinct points x0, x1, . . . , xN . How can we approximate f(x) for all x?

In {polynomial interpolation}, we do this by constructing a polynomial pN of degree N
such that

pN(xi) = f(xi), i = 0, . . . , N. (2)

2.1 Linear interpolation
Linear interpolation is the case N = 1. We are given two points x0 ̸= x1 and values
f(x0) and f(x1). The interpolant p1(x) is simply the straight line given by

p1(x) = f(x0) +
(

f(x1) − f(x0)
x1 − x0

)
(x − x0). (3)

You should check that p1 is linear and p1(xi) = f(xi) for i = 0, 1.

Example 2.1. Approximate f(x) =
√

x by linear interpolation at x0 = 1/4 and x1 = 1.

By (3),

p1(x) =
√

1
4 +

1 −
√

1
4

1 − 1
4

 (x − 1
4)

= 2
3x + 1

3 .

4

Figure 1: Linear interpolation of f(x) =
√

x at x0 = 1/4 and x1 = 1

Figure 1 shows graphs of f(x) and p1(x) for x0 = 1/4 and x1 = 1, and the error at each
point.

Figure 2: Linear interpolation of f(x) =
√

x at x0 = 0 and x1 = 3/4

Figure 2 shows the same graphs for x0 = 0 and x1 = 3/4.The error in the second example
is much bigger! Let us explain why.

Corollary 2.1 (Rolle’s theorem). Let f : [a, b] → R be smooth with f(a) = f(b). There
exists ξ ∈ (a, b) such that f ′(ξ) = 0.

Proof. This is a special cause of the mean-value theorem using f(a) = f(b).

To analyse the error in linear interpolation, set

e(x) := f(x) − p1(x).

Note that e(x0) = 0 = e(x1).

5

Theorem 2.1. Suppose that f : [x0, x1] → R is smooth. For all x ∈ (x0, x1), there
exists ξ ∈ (x0, x1) such that

e(x) = f ′′(ξ)
2 w2(x), where w2(x) := (x − x0)(x − x1). (4)

Proof. Fix x ∈ (x0, x1) and note that w2(x) ̸= 0. Define

g(t) := e(t) − e(x)
w2(x)w2(t) for t ∈ [x0, x1]. (5)

Observe that
g(x0) = e(x0) − e(x)

w2(x)w2(x0) = 0 − 0 = 0.

Similarly g(x1) = 0.

Also,
g(x) = e(x) − e(x)

w2(x)w2(x) = e(x) − e(x) = 0.

The smoothness assumption of f implies smoothness of g and Rolle’s theorem applies.
Hence, applying Rolle’s theorem twice,

∃η1 ∈ (x0, x), η2 ∈ (x, x1) such that g′(η1) = 0 = g′(η2).

Now consider g′(t):

g′(t) = e′(t) − e(x)
w2(x)w′

2(t).

Hence, Rolle’s theorem implies again and

∃ξ ∈ (η1, η2) such that g′′(ξ) = 0. (6)

By (5),

g(t) = f(t) − p1(t) − e(x)
w2(x)(t − x0)(t − x1).

Since p1 is a linear function, p′′
1(t) ≡ 0 and so

g′′(t) = f ′′(t) − 0 − 2 e(x)
w2(x) .

As g′′(ξ) = 0 by (6),

0 = f ′′(ξ) − 2 e(x)
w2(x)

and finally this can be rearranged to show that (4) holds.

6

We note that ξ in (4) depends on x and we do not know it explicitly in general. We only
know that it exists. This makes the above formula for the error difficult to use. To get
around this, we replace the term involving ξ by something that is easier to understand.

Definition 2.1. For any interval I and f : I → R, we define the sup norm

∥f∥∞,I := sup
x∈I

|f(x)|.

Here, sup means supremum or least upper bound and, in many cases, it is the same as
finding the maximum of |f(x)| on I.

Corollary 2.2. Under the assumptions of Theorem 2.1,

∥e∥∞,[x0,x1] ≤ (x1 − x0)2

8 ∥f ′′∥∞,[x0,x1]. (7)

Proof. From Theorem 2.1, for all x ∈ (x0, x1),

|e(x)| = |f ′′(ξ)|
2 |w2(x)|, for some ξ ∈ (x0, x1).

Also,
|w2(x)| = |(x − x0)(x − x1)| = (x − x0)(x1 − x).

Simple calculus (see Problem E2.1) shows that

|w2(x)| ≤ (x1 − x0)2

4 .

Hence,
|e(x)| ≤ (x1 − x0)2

8 ∥f ′′∥∞,[x0,x1].

This inequality also holds for x = x0 and x1 (since the left-hand side vanishes) and we
have derived (7).

The smoothness of f affects the quality of the approximation and we see that the error
is proportional to f ′′(ξ). The size of the derivatives of f is one way to quantify the
smoothness of a function. In Figure 1, f(x) =

√
x on [1/4, 1] and in Figure 2 the interval

is [0, 3/4]. Because f ′′(x) → ∞ as x → 0, ∥f ′′∥∞,[0,3/4] is infinite and the error is much
larger in the second example.

See Problem E2.4 for a computational example.

7

Figure 3: Piecewise-linear interpolation

2.1.1 Piecewise-linear interpolation

To get a (more) accurate approximation to f : [a, b] → R, we subdivide [a, b] into a mesh
of points

a = y0 < y1 < · · · < yJ = b

and use linear interpolation on each subinterval [yj−1, yj].

Let p1,J denote the piecewise-linear function on [a, b] that interpolates f at all the points
yj of the mesh and let hj := yj − yj−1. By Corollary 2.2,

∥f − p1,J∥∞,[yj−1,yj] ≤ 1
8h2

j∥f ′′∥∞,[yj−1,yj].

Clearly,
∥f − p1,J∥∞,[a,b] = max

j=1,...,J
∥f − p1,J∥∞,[yj−1,yj].

Hence, in terms of the mesh width h := maxj=1,...,J hj,

∥f − p1,J∥∞,[a,b] ≤ 1
8h2 max

j=1,...,J
∥f ′′∥∞,[yj−1,yj] = 1

8h2∥f ′′∥∞,[a,b]. (8)

Convergence is achieved as h → 0 and the error is O(h2).

At the points yj, the function f is only required to be continuous! It does not need to
be twice continuously differentiable at yj. If all discontinuities in f ′ are resolved by the
mesh, we can deal with less smooth functions in piecewise interpolation.

Example 2.2. Let f(x) = exp(x2) on [a, b] = [0, 1] and let yj = jh, j = 0, . . . , J , where
h = 1/J (this is called a uniform mesh). In Problem E3.1, you will write a program to
compute

eh := max
j=1,...,J

|(f − p1,J)(zj)|

where zj := (yj−1 + yj)/2 (the midpoint of [yj−1, yj]). A discrete set of points is used for
the maximum instead of the whole interval, to allow easy computation.

8

h eh (eh)/(eh/2) bound(h)
1/8 2.60e-2 3.62 3.18e-2
1/16 7.19e-3 3.80 7.95e-3
1/32 1.89e-3 3.90 1.99e-3
1/64 4.85e-4 4.97e-4

To estimate the rate of convergence, we conjecture that eh = Chα. Then,

(eh)/(eh/2) = 2α.

The third column suggests α approaches 2. To prove this rigorously, note that

f ′′(x) = (4x2 + 2) exp(x2) ⇒ ∥f ′′∥∞,[0,1] ≤ 6 exp(1).

Hence, from (8),

eh ≤ ∥f − p1,J∥∞,[0,1] ≤ 1
8h2∥f ′′∥∞,[0,1] ≤ 3

4 exp(1)h2 =: bound(h).

Note how sharp the theoretical bound is (in the table)!

2.2 Degree-N interpolation
When f is smooth, better accuracy is possible by choosing the degree-N polynomial
that interpolates at N + 1 distinct points instead. Let PN denote the polynomials of
degree N or less.

Problem. Given N +1 distinct points x0, . . . , xN and values f(x0), . . . , f(xN), compute
a polynomial pN ∈ PN with the property that

pN(xi) = f(xi), i = 0, . . . , N. (9)

We finish this chapter with two theorems:

Theorem 2.2 (Existence and Uniqueness). Let x0, x1, · · · , xN be distinct points in [a, b]
and suppose f : [a, b] → R is continuous. Then, there exists a unique pN ∈ PN satisfying
pN(xi) = f(xi) for i = 0, . . . , N .

Proof. Let
Lj(x) :=

∏
i ̸=j(x − xi)∏
i ̸=j(xj − xi)

,

where ∏ denotes the product of each term. These are known as {Lagrange basis
functions} and are degree-N polynomials (i.e., Lj ∈ PN). Note that Lj(xk) = δjk (the
Kronecker delta function), with δjk = 0 if j ̸= k and δjk = 1 if j = k. Define

pN(x) =
N∑

j=0
f(xj)Lj(x).

9

Then, evaluating at x = xi, we have

pN(xi) =
N∑

j=0
f(xj)δij = f(xi).

This is a degree-N interpolant of f and we have proved existence.

To show uniqueness, let p, q ∈ PN both satisfy (9). Then p, q agree at N + 1 distinct
points and r := p − q is a degree-N polynomial with N + 1 distinct roots. This can only
happen if r ≡ 0 and the polynomials p and q are identical.

The following theorem generalises Theorem 2.1 to general N . We assume the points are
well ordered so that xi < xi+1.

Theorem 2.3. Suppose the conditions of Theorem 2.1 hold and that f is smooth. Then,
for all x ∈ [x0, xN], there exists ξ ∈ (x0, xN) such that

(f − pN)(x) = f (N+1)(ξ)
(N + 1)! wN+1(x).

where wN+1(x) = (x − x0) × · · · × (x − xN).

Proof. Not covered.

Notice that now derivatives of order N + 1 determine the quality of the approximation.
It is easy to show that wN+1(x) = O(hN+1) if |xi − xj| ≤ h. Hence, if f is (N + 1)-times
continuously differentiable, ∥f − pN∥∞,[x0,xN] = O(hN+1).

Care is needed to apply high-degree polynomial interpolation, especially with uniformly
spaced points; see Figure 4.

10

Figure 4: Runge’s phenonmenon with the function f(x) = 1/(25x2 + 1)

Here the solid lines show the interpolant pN ∈ PN of f(x) = 1/(25x2 + 1) based on
N + 1 uniformly spaced points on the interval [−1, 1]. Note how the oscillations near
the end points become wilder as N is increased. The difficulty with this choice of f(x)
is its derivatives, which become larger as roughly speaking each derivative increases by
a factor of 25 and Theorem 2.3 requires the derivatives to be well behaved.

2.3 Newton’s divided-difference formulae
Newton provided an elegant way of writing interpolation formulae, which is especially
useful when adding more interpolation points. Let’s derive his divided differences and the
associated formulae for polynomial interpolation. We approximate a function f : R → R.

One data point We are given (x0, f(x0)) and the constant interpolation function is
p0(x) = f(x0).

Two data points Given a second point (x1, f(x1)), we wish to update the interpolation
function by increasing the polynomial degree. We write

p1(x) = p0(x) + A1(x − x0),

11

where A1 is a coefficient to be determined. Notice that p1(x0) = f(x0) for any choice of
A1; we automatically satisfy the first interpolation condition. To determine A1, apply
the second interpolation condition p1(x1) = f(x1), to find

A1 = f(x1) − p0(x)
x1 − x0

= f(x1) − f(x0)
x1 − x0

.

This quantity is Newton’s first divided-difference and usually denoted f [x0, x1] (or
f [x1, x0] as order does not matter here). The linear interpolant is p1(x) = f(x0) +
f [x0, x1](x − x0).

Three data points Add another data point and build the degree-two interpolant p2(x)
by adding to the already-known degree-one interpolation. Write

p2(x) = p1(x) + A2(x − x0)(x − x1)

for some A2 to be determined. Notice that p2(x) satisfies the first two interpolation
conditions, and A2 is determined by p2(x2) = f(x2). That is,

f(x2) = p1(x2) + A2(x2 − x0)(x2 − x1)

so that

A2 = f(x2) − f(x0) − f [x0, x1](x2 − x0)
(x2 − x0)(x2 − x1)

= f [x2, x0] − f [x0, x1]
(x2 − x1)

=: f [x0, x1, x2],

which is the second Newton divided-difference. You should verify that permuting
[x0, x1, x2] leaves its definition unchanged. The quadratic interpolant p2(x) = f(x0) +
f [x0, x1](x − x0) + f [x0, x1, x2](x − x0)(x − x1).

Four data points The pattern continues. For example, if we add a fourth point
x3, f(x3), the degree-three interpolant is written

p3(x) = f(x0) + f [x0, x1](x − x0) + f [x0, x1, x2](x − x0)(x − x1)
+ f [x0, x1, x2, x3](x − x0)(x − x1)(x − x2),

where the Newton divided-difference is defined by

f [x0, . . . , xn] := f [x1, . . . , xn] − f [x0, . . . , xn−1]
xn − x0

,

which is invariant to permutation of its arguments.

12

3 Numerical integration
Problem. Given a function f : [a, b] → R, compute approximations of

∫ b
a f(x) dx using

only samples of f at some points in the interval [a, b].

Numerical integration is important since, for many functions f , the integral cannot be
found exactly, but point values of f are relatively easy to compute (e.g., f(x) = exp(x2)).
Initially, we work on a reference interval [a, b] = [0, 1] and consider first

∫ 1

0
f(x) dx. (10)

We approximate this by quadrature rules of the form

Q(f) =
N∑

i=0
wif(xi) (11)

where xi are distinct points in [0, 1] and wi are some suitable weights. We study ways
to fix the xi and the wi independently of any particular choice of f , so that (11) can be
computed easily for any f .
How to choose xi and wi?

Idea: Replace f with an interpolating polynomial. Polynomials are simple to integrate
and lead to easy-to-use quadrature rules with a set of weights wi for any given set of
points xi.

3.1 Newton-Cotes rules
3.1.1 Newton-Cotes rules over the interval [0, 1]

Start with equally spaced points xi = i/N , i = 0, . . . , N, and find suitable weights wi.
We construct the rule (11) by integrating the degree-N interpolating polynomial pN(x)
for f at xi.

Two points: For N = 1, we have two points x0 = 0 and x1 = 1. Then (see subsection
2), the linear interpolant to f is

p1(x) = f(0) + (f(1) − f(0)) x

and ∫ 1

0
p1(x) dx = f(0) + (f(1) − f(0))

∫ 1

0
x dx

= f(0) + 1
2(f(1) − f(0)) = 1

2 (f(0) + f(1)) .

We have derived the trapezoidal or trapezium rule

Q1(f) := 1
2 (f(0) + f(1)) for approximating

∫ 1

0
f(x)dx. (12)

13

Here the weights w0 = w1 = 1
2 . It is called the trapezium rule because it approximates∫ 1

0 f(x) dx by the area of the trapezium under the straight line p1(x) that interpolates f
between 0 and 1. It is exact (i.e., Q1(f) =

∫ 1
0 f(x) dx) for any polynomial f of degree

1 (i.e., f ∈ P1), since in that case p1 = f by the uniqueness of the linear interpolant
(recall Theorem 2.2).

Figure 5: The trapezium rule

3.1.1.1 Three points: For N = 2, we have three points x0 = 0, x1 = 1, and
x2 = 1/2. Using the Newton divided-difference form of the quadratic interpolant,

p2(x) = f(0) + f [0, 1]x + f [0, 1, 1/2]x(x − 1).

Then, ∫ 1

0
p2(x) dx = f(0) + 1

2f [0, 1] + f [0, 1, 1/2]
∫ 1

0
(x2 − x) dx︸ ︷︷ ︸

=−1/6

= f(0) + 1
2

f(1) − f(0)
1 − 1

6
f [0, 1/2] − f [0, 1]

1/2 − 1 ,

where f [0, 1/2] = 2(f(1/2) − f(0)) and f [0, 1] = f(1) − f(0). Thus,∫ 1

0
p2(x) dx = f(0) + 1

2(f(1) − f(0)) + 1
3 (2f(1/2) − 2f(0) + f(0) − f(1))

= 1
6
[
f(0) + 4f

(
1
2

)
+ f(1)

]
.

This is called Simpson’s rule. We write

Q2(f) := 1
6f(0) + 4

6f
(

1
2

)
+ 1

6f(1), (13)

14

with weights w0 = w1 = 1
6 and w2 = 4

6 . This rule is exact for all f ∈ P2, since again in
that case p2 = f .

In general, Newton-Cotes quadrature rules are of the form

QN(f) :=
N∑

i=0
wif(xi)

where xi = i/N for i = 0, . . . , N , and the weights wi can be found by integrating the
degree-N interpolating polynomial. By writing pN (x) using the Lagrange basis functions
(see the proof of Theorem 2.2),

pN(x) =
N∑

i=0
Li(x)f(xi),

we can show that
wi =

∫ 1

0
Li(x) dx.

3.1.2 Newton-Cotes rules over a general interval [a, b]

Suppose now we have a rule

Q(f) =
N∑

i=0
wif(xi) that approximates

∫ 1

0
f(x) dx. (14)

To approximate
∫ b

a f(t)dt, we make a change of variable x = t − a

b − a
and dx = 1

b−a
dt.

Then, t ∈ [a, b] is mapped to x ∈ [0, 1] and∫ b

a
f(t) dt =

∫ 1

0
(b − a)f (a + x(b − a))︸ ︷︷ ︸

=: g(x)
dx =

∫ 1

0
g(x) dx.

We now use Q(g) to approximate the right-hand side, to obtain the rule

Q[a,b](f) :=
N∑

i=0
wig(xi) = (b − a)

N∑
i=0

wif (a + (b − a)xi) . (15)

Notation: We use superscript [a, b] to denote a rule over [a, b]. We omit the superscript
for [0, 1]. The lowest-order Newton-Cotes rules on a general interval [a, b] are

Q
[a,b]
1 (f) = b − a

2 (f(a) + f(b)) , trapezium rule

Q
[a,b]
2 (f) = b − a

6

(
f(a) + 4f

(
b + a

2

)
+ f(b)

)
, Simpson’s rule.

15

Example 3.1. Let us apply these to the integral of f(x) =
√

x over [1/4, 1]. Then

Q
[1/4,1]
1 (f) =

1 − 1
4

2

(√
1/4 + 1

)
= 3

8
3
2 = 9/16 = 0.5625, trapezoidal

Q
[1/4,1]
2 (f) =

1 − 1
4

6

(√
1/4 + 4

√
5/8 + 1

)
= 0.582785 (6 s.f.), Simpson’s.

The exact value ∫ 1

1/4

√
x dx = 2

3
[
x3/2

]1
1/4

= 7
12 = 0.583333 (6 s.f.),

so the absolute value of the error in Simpson’s rule is |0.582785 − 0.583333| = 5.48×10−4,
which is about 38 times smaller than the error in the trapezoidal rule |9/16 − 0.583333| =
2.083 × 10−2.

3.1.3 Composite rules

As for the piecewise interpolation in 2, instead of increasing the accuracy of quadrature
by choosing higher-order interpolating polynomials, we can also split the integration
domain into subintervals by introducing a mesh and applying low-order rules on the
sub-intervals.

Consider a general quadrature rule (e.g., from subsection 3.1)

Q(f) =
N∑

i=0
wif(xi) that approximates

∫ 1

0
f(x) dx, (16)

for some N , weights wi and distinct points xi. To approximate
∫ b

a f(t) dt, we introduce
the mesh a = y0 < y1 < · · · < yJ = b and write

∫ b

a
f(t) dt =

∫ y1

y0
f(t) dt +

∫ y2

y1
f(t) dt + · · · +

∫ yJ

yJ−1
f(t) dt =

J∑
j=1

∫ yj

yj−1
f(t) dt.

Now use the quadrature rule given by (16) on each subinterval, to obtain the approxi-
mation ∫ b

a
f(t) dt ≈

J∑
j=1

Q[yj−1,yj](f) =
J∑

j=1
hj

N∑
i=0

wif(yj−1 + hjxi), (17)

where hj = yj − yj−1. The approximation (17) is known as the composite version of
(16).

As in the case of interpolation, we expect that accuracy will increase when the mesh
width maxj hj → 0.

16

Example 3.2 (composite trapezoidal rule).

Q
[a,b]
1,J (f) :=

J∑
j=1

Q
[yj−1,yj]
1 (f) =

J∑
j=1

hj

2 (f(yj−1) + f(yj)) . (18)

For a uniform mesh, hj = h := (b − a)/J„ j = 1, . . . , J , this can be written compactly as

Q
[a,b]
1,J (f) := h

f(a)
2 +

J−1∑
j=1

f(yj) + f(b)
2

 .

Example 3.3 (composite Simpson’s rule).

Q
[a,b]
2,J (f) :=

J∑
j=1

Q
[yj−1,yj]
2 (f) =

J∑
j=1

hj

6 (f(yj−1) + 4f(mj) + f(yj)) , (19)

where the midpoints mj = yj−1 + yj

2 . For a uniform mesh, this can again be written
more compactly as

Q
[a,b]
2,J (f) = h

6

f(a) + 2
J−1∑
j=1

f(yj) + 4
J∑

j=1
f(mj) + f(b)

 .

Please implement the general formulae (18) and (19) in Python, so that we can apply
the rules on any mesh.

3.2 Error analysis
3.2.1 Non-composite rules over [0, 1]

Given a rule
Q(f) :=

N∑
i=0

wif(xi) (20)

that approximates
I(f) :=

∫ 1

0
f(x) dx,

we define the error in the quadrature rule to be

E(f) := I(f) − Q(f) . (21)

Definition 3.1 (DoP). The rule Q(f) in (20) has degree of precision (DoP) d ∈ N
if

E(xr) = 0 for all r ∈ N with 0 ≤ r ≤ d, and E(xd+1) ̸= 0.

17

Example 3.4 (trapezium rule DoP). The trapezium rule Q1(f) = 1
2(f(0) + f(1)), and

the error E1(f) := I(f) − Q1(f). We create the following table:

r xr I(xr) Q1(xr) E1(xr)
0 1 1 1

2 · 1 + 1
2 · 1 = 1 0

1 x 1
2

1
2 · 0 + 1

2 · 1 = 1
2 0

2 x2 1
3

1
2 · 0 + 1

2 · 1 = 1
2 −1

6

Hence the DoP of the trapezoidal rule is 1.

Example 3.5 (Simpson’s rule DoP). Simpson’s rule Q2(f) = 1
6

[
f(0) + 4f

(
1
2

)
+ f(1)

]
,

and the error E2(f) := I(f) − Q2(f). We create the following table:

r xr I(xr) Q2(xr) E2(xr)
0 1 1 1

6 (1 · 1 + 4 · 1 + 1 · 1) = 1 0
1 x 1

2
1
6

(
1 · 1 + 4 · 1

2 + 1 · 1
)

= 1
2 0

2 x2 1
3

1
6

(
1 · 1 + 4 ·

(
1
2

)2
+ 1 · 1

)
= 1

3 0

3 x3 1
4

1
6

(
1 · 1 + 4 ·

(
1
2

)3
+ 1 · 1

)
= 1

4 0

4 x4 1
5

1
6

(
1 · 1 + 4 ·

(
1
2

)4
+ 1 · 1

)
= 5

24 − 1
120

Hence the DoP of Simpson’s rule is 3.

The trapezium rule Q1 is found by integrating p1 and it is not surprising that its DoP is
1. Similarly, Q2 is found by integrating p2 and thus we’d expect a DoP of at least 2. A
DoP of 3 is a surprise.
In fact, it turns out that for all N ∈ N the Newton-Cotes rule QN(f) is of DoP N if N
is odd and of DoP N + 1 if N is even.

Proposition 3.1. If (20) has DoP d, then

E(p) = 0, for all p ∈ Pd.

Proof. For any f1, f2 : [0, 1] → R and α, β ∈ R,

I(αf1 + βf2) = αI(f2) + βI(f2) and Q(αf1 + βf2) = αQ(f2) + βQ(f2), (22)

since I and Q are both linear transformations.

If p ∈ Pd, p is a polynomial of degree less than or equal to d and can be written

p(x) =
d∑

r=0
arx

r, for some coefficients ar ∈ R.

18

Hence, using (22),

I(p) − Q(p) =
d∑

r=0
ar [I(xr) − Q(xr)] = 0,

since the DoP equals d.

With significant further work, we can show that, for the trapezium rule, there exists
ξ ∈ [0, 1] such that

E1(f) =
[

E1(x2)
2!

]
f ′′(ξ) = − 1

12f ′′(ξ), for all f ∈ C2[0, 1]. (23)

For p ∈ P1, p′′ ≡ 0 and E1(p) = 0 as expected from the DoP calculation.

For Simpson’s rule, there exists ξ ∈ [0, 1] such that

E2(f) =
[

E2(x4)
4!

]
f (4)(ξ) = − 1

2880f (4)(ξ), for all f ∈ C4[0, 1].

Notice the error for Simpson’s rule depends on the fourth derivative of f while that for
the trapezium rule depends on the second derivative. Here Ck[a, b] is the set of functions
f : [a, b] → R that are k-times continuously differentiable.

This leads to estimates over [a, b] instead of [0, 1] by a change of variables.

Example 3.6. The error for the trapezoidal rule over [a, b] is

E
[a,b]
1 (f) :=

∫ b

a
f(t) dt − Q

[a,b]
1 (f).

To determine the error, we recall that∫ b

a
f(t) dt =

∫ 1

0
g(x) dx, Q

[a,b]
1 (f) = Q1(g),

from (15) with g(x) = (b − a)f(a + (b − a)x). Now g′(x) = (b − a)2f ′(a + (b − a)x) and
g′′(x) = (b − a)3f ′′(a + (b − a)x). By (23),

E1(g) =
∫ 1

0
g(x) dx − Q1(g) = − 1

12g′′(ξ) = − 1
12(b − a)3f ′′(η)

for some ξ ∈ [0, 1] and η := a + (b − a)ξ. Then,

E
[a,b]
1 (f) = −(b − a)3

12 f ′′(η) for some η ∈ [a, b].

A similar calculation shows that the error for Simpson’s rule over [a, b] is

E
[a,b]
2 (f) :=

∫ b

a
f(t) dt − Q

[a,b]
2 (f) = −(b − a)5

2880 f (4)(η) for some η ∈ [a, b].

Notice the fifth power of (b − a), which comes from the change of coordinates from t to
x.

19

3.2.2 Composite Newton-Cotes rules

Let QN be a Newton-Cotes rule on [0, 1] with degree of precision d. The composite
version with J subintervals on [a, b] is (as in subsection 3.1.3):

Q
[a,b]
N,J (f) =

J∑
j=1

Q
[yj−1,yj]
N (f).

The error can be expressed in terms of the error made in approximating the sub-integrals.

E
[a,b]
N,J (f) :=

∫ b

a
f(x) dx − Q

[a,b]
N,J (f) =

J∑
j=1

[∫ yj

yj−1
f(x) dx − Q

[yj−1,yj]
N (f)

]
︸ ︷︷ ︸

=E
[yj−1,yj]
N (f)

.

We have formula for E
[a,b]
N for N = 1, 2, which lead to the following error estimates for

the composite trapezium and Simpson’s rule.

Example 3.7 (Composite trapezium rule error). If f ∈ C2[a, b], then there exists
ηj ∈ [yj−1, yj] such that

E
[a,b]
1,J (f) = − 1

12

J∑
j=1

h3
jf

(2)(ηj) and
∣∣∣E[a,b]

1,J (f)
∣∣∣ ≤ b − a

12 ∥f (2)∥∞,[a,b]h
2,

since ∑J
j=1 hj = b − a.

Example 3.8 (Composite Simpson’s rule error). If f ∈ C4[a, b], then there exists
ηj ∈ [yj−1, yj] such that

E
[a,b]
2,J (f) = − 1

2880

J∑
j=1

h5
jf

(4)(ηj) and
∣∣∣E[a,b]

2,J (f)
∣∣∣ ≤ b − a

2880 ∥f (4)∥∞,[a,b]h
4.

If f(x) fails to be sufficiently differentiable on all of [a, b], but is sufficiently differentiable
on subintervals of [a, b], we can apply error estimates there.

Example 3.9. Consider f(x) =
√

x on [0, 1], which has infinitely many derivatives on
subintervals that do not contain~0, but no bounded derivatives on [0, 1]. Consider the
composite trapezoidal rule for

∫ 1
0 f(x) dx on the mesh 0 = y0 < y1 < · · · < yJ = 1. Then

E
[0,1]
1,J (f) =E

[0,y1]
1,J (f) + E

[y1,1]
1,J (f)

=
(∫ y1

0
f(x) dx − h1

√
y1

2

)
− 1

12

J∑
j=2

h3
jf

(2)(ηj) . (24)

Now, we can estimate each of the terms in (24) separately (see Problem E5.2).

20

3.3 Gaussian quadrature rules
The only examples of quadrature rules so far have been Newton-Cotes rules with equally
spaced points. Can we do better with other points?

To take advantage of symmetry and simplify calculations, we work on the interval [−1, 1]
rather than [0, 1] (which can of course be transformed onto [0, 1]). Let xi, i = 0, . . . , N ,
be arbitrary points in [−1, 1], and let pN(x) be the degree-N interpolating polynomial
for a function f at these points. Consider the rule:

Q
[−1,1]
Gauss,N(f) :=

∫ 1

−1
pN(x) dx (25)

as an approximation to ∫ 1

−1
f(x) dx. (26)

This rule has DoP at least N . Can we do better with a clever choice of points? There
are 2N + 2 degrees of freedom (given by choice of xi and wi for i = 0, . . . , N) and
d + 1 conditions to achieve of a DoP of d. By equating the number of conditions to the
number of degrees of freedom, d + 1 = 2N + 2, we hope that a DoP d = 2N + 1 can be
achieved by careful choice of xi and weights wi.

Example 3.10 (One point, N=0). To achieve a DoP of d = 2N + 1 = 1, we demand
that

Q(1) =
∫ 1

−1
1 dx = 2 and Q(x) =

∫ 1

−1
x dx = 0. (27)

As p0(x) is a constant, we must have p0(x) = f(x0) and

Q(f) = w0f(x0).

Then, w0 = 2 and x0 = 0 gives (27). Therefore, the one-point Gauss rule (or
midpoint rule), obtained by integrating the degree-0 interpolant p0 at x0 = 0 over
[−1, 1] is

Q
[−1,1]
Gauss,0(f) :=

∫ 1

−1
p0(x) dx = 2f(0).

This is exact when f = 1 and f = x, so it is a one-point rule with DoP = 1. Any other
one-point rule has only DoP = 0.

Example 3.11 (Two points, N=1). To achieve a DoP d = 2N + 1 = 3, we demand that

Q(1) = 2, Q(x) = 0, Q(x2) = 2
3 , and Q(x3) = 0.

As
Q(f) = w0f(x0) + w1f(x1),

21

we must have w0+w1 = 2 and w0x0+w1x1 = 0 and w0x
2
0+w1x

2
1 = 2/3 and w0x

3
0+w1x

3
0 =

0. By symmetry considerations, we must have x0 = −x1 and w0 = w1. Then w0 = w1 = 1
and 2x2

0 = 2/3, so that x0 =
√

1/3. We obtain the two-point Gauss rule

Q
[−1,1]
Gauss,1(f) :=

∫ 1

−1
p1(x) dx = f

(
1√
3

)
+ f

(
− 1√

3

)
.

Although only a two-point rule, its DoP is 2N + 1 = 3. Compare with the trapezium
rule which uses two points and has DoP only 1!

Remark. Composite Gauss rules can also be derived and are highly effective.

High-frequency integrands, where f oscillates rapidly and where the derivatives of f
are large, are particularly difficult and arise, for example, in high-frequency scatter-
ing applications (e.g., radio waves). This requires special techniques such as Filon
quadrature.

Multivariate integrals are also important. For low-dimensional problems, simple tensor-
product rules (applying one-dimensional rules in each dimension) work fine and our
theory carries over easily. For high-dimensional integrals, the only feasible methods
currently are Monte Carlo-type methods.

4 Solving nonlinear equations

4.1 Root finding
Root finding problem. For a given function f : R → R, determine a solution x of the
equation f(x) = 0. A solution x is known as a root of f .

For most f , there is no formula to give x explicitly and numerical methods are required.
For example, we may use the bisubsection method and choose an interval [a, b] that
contains the root by checking that f(a) > 0 and f(b) < 0 or vice versa (f changes sign
and has a root in the interval if it is continuous). Bisecting the interval and choosing
one subinterval where f changes signs at the endpoints gives a new interval containing
a root. Then, we iterate to find successively smaller intervals and better approximations
to the root. Given a suitable initial interval, this bisubsection method is simple to apply
but does not generalise easily to higher dimension. Instead, we focus on fixed-point
iterations.

4.2 Fixed-point iteration
Definition 4.1 (root, fixed point). We say x is a root of a function f if f(x) = 0, and
x is a fixed point (FP) of a function g if g(x) = x.

Often, root-finding problems can be replaced by fixed-point (FP) problems:

22

Example 4.1. Let f(x) = x3 + 4x2 − 10. There are many ways of posing this as a FP
problem g(x) = x.

• Let g1(x) = x − x3 − 4x2 + 10. Then, it is easy to check that g1(x) = x if and only
if f(x) = 0.

• Let g2(x) = 1
2(10 − x3)1/2 (positive root). For x > 0, g2(x) = x if and only if

f(x) = 0.

• Let g3(x) =
(

10
4+x

)1/2
, which is again a FP problem for the root-finding problem

for f .

Define the sequence xn by xn+1 = g(xn), given an initial condition x0. Under what
conditions does xn converge to a fixed point of g and can this be used for computing
the root? To answer this question, we have the fixed-point theorem. We use the term
‘smooth’ to mean the function has enough continuous derivatives.

Theorem 4.1 (Convergence of FP iteration). Let g : [a, b] → R be a smooth function.
Then, if (i) g(x) ∈ [a, b] for x ∈ [a, b] and (ii) |g′(x)| ≤ λ < 1 for x ∈ [a, b], then the
sequence xn defined by xn+1 = g(xn) for any x0 ∈ [a, b] converges to the unique fixed
point x of g. Further,

|xn − x| ≤ λn|x − x0|.

As well as convergence of the FP iteration, this theorem also gives existence and
uniqueness of the FP of g in [a, b].

Example 4.2. We look back at the fixed point problems in Example 4.1:

• g1(x) = x − x3 − 4x2 + 10 and [a, b] = [1, 2]. Then g1(1) = 6 and condition (i) fails.
The FP theorem does not apply to the iteration based on g1.

• g2(x) = 1
2 (10 − x3)1/2 and

g′
2(x) = 1

4
(
10 − x3

)−1/2
(−3x2) = −3x2

4(10 − x3)1/2 ,

g′
2(2) = −3 · 4

4(10 − 8)1/2 = −3√
2

≈ −2.12.

Hence, |g′
2(x)| > 1 and condition (ii) fails. Again, the FP theorem does not apply.

• g3(x) =
(

10
4+x

)1/2
and

g′
3(x) = 1

2

(10
4 + x

)−1/2 (−10
(4 + x)2

)
= −5

(4 + x)3/2
√

10
.

As g3 is decreasing and g3(2) =
√

10/6 ∈ [1, 2] and g3(1) =
√

2 ∈ [1, 2], we see that
condition (i) holds. Further,

|g′
3(x)| ≤ 5√

10
1

53/2 < 1 for x ∈ [1, 2].

23

Hence (ii) holds. The FP theorem applies and xn → x, the unique fixed point of
g, and the root of f : try it,

x1 = 1.5, x2 = g3(1.5) ≈ 1.3484, x3 ≈ 1.3674, x4 ≈ 1.365.

We see that the first three digits of xn have already converged and that f(1.365) =
−0.0038, indicating that 1.365 is close to the root of f .

For the proof of the fixed point theorem, we use the mean-value theorem from MA12001.

Theorem 4.2 (mean-value theorem). Let f : [a, b] → R be smooth. There exists
ξ ∈ (a, b) such that

f(b) − f(a)
b − a

= f ′(ξ).

We now prove Theorem 4.1:

Proof. Let f(x) = g(x) − x. Then, by (i), f(a) = g(a) − a ≥ 0 and f(b) = g(b) − b ≤ 0.
By the intermediate-value theorem, there exists x ∈ [a, b] such that f(x) = 0. In other
words, there exists x ∈ [a, b] so that g(x) = x.

Consider the iteration xn+1 = g(xn) and the fixed-point equation x = g(x). Then,

xn+1 − x = g(xn) − g(x).

By the mean-value theorem, there exists ξ ∈ (a, b) so that

xn+1 − x = g′(ξ)(xn − x)

(as g is smooth). Now |g′(ξ)| ≤ λ and

|xn+1 − x| ≤ λ|xn − x|.

By a simple induction argument, this implies that |xn − x| ≤ λn|x0 − x|.

Finally, to show uniqueness, consider two fixed-points x, y of g. Then g(x) = x and
g(y) = y and hence

x − y = g(x) − g(y) = g′(ξ)(x − y).
As |g′(ξ)| ≤ λ, we see that

|x − y| ≤ λ|x − y|.

As λ < 1, it must hold that x = y and there is only one fixed point of g in [a, b].

24

4.3 Newton’s method
The most well-known example of a fixed-point iteration is Newton’s method. This is
the iteration

xn+1 = g(xn), g(x) := x − f(x)
f ′(x) ,

where we assume that f ′(x) ̸= 0. Clearly, f(x) = 0 if and only if g(x) = x.

We show the FP theorem applies:

Theorem 4.3 (local convergence of Newton’s method). Suppose that f is smooth and
that f(x) = 0 and f ′(x) ̸= 0. Then, there exists ϵ > 0 so that Newton’s method converges
to the root x of f if the initial guess x0 ∈ [x − ϵ, x + ϵ].

Proof. With g(x) = x − f(x)/f ′(x), we have

g′(x) = 1 − f ′(x)
f ′(x) + f(x)f ′′(x)

f ′(x)2 = 0 (28)

as f(x) = 0. As f and g are smooth, we have |g′(y)| ≤ λ := 1
2 for y ∈ [x − ϵ, x + ϵ]

by choosing ϵ sufficiently small. This gives (ii) of the FP theorem for a = x − ϵ and
b = x + ϵ. For (i), note that

|g(y) − x| = |g(y) − g(x)| ≤ |g′(ξ)| |x − y| ≤ 1
2ϵ,

for any y ∈ [a, b] and some ξ ∈ (a, b) by the mean-value theorem. Clearly, then
g(y) ∈ [x − ϵ, x + ϵ] = [a, b] and (i) of the FP theorem holds. We conclude that Newton’s
method converges for initial conditions close (as given by ϵ) to x.

This theorem is problematic for the practitioner: it says that Newton’s method converges
if we can start close enough to the root! We don’t usually know the root and we don’t
usually know what ϵ is (i.e., what close enough means). However, Newton’s method is
often effective and, when it works, it is often very fast.

To quantify the speed of convergence, we define the order of convergence.

Definition 4.2 (order of convergence). Consider a sequence xn approximating x. Let
en := |xn − x|, the error in the approximation. We say that xn converges to x with
order r if

• case r = 1 (linear convergence): en+1 ≤ Ken for all n ∈ N, for some K < 1;

• case r > 1: en+1 ≤ Ker
n for all n ∈ N, for some K > 0. The case r = 2 is known

as quadratic convergence.

One of the most useful tools in numerical analysis is Taylor’s theorem from MA12001:

25

Theorem 4.4 (Taylor’s theorem). Suppose that f : (a, b) → R is (m + 1)-times
continuously differentiable and suppose x0, x ∈ (a, b) with x0 ̸= x. Then,

f(x) = f(x0) + f ′(x0)(x − x0) + f ′′(x0)
2 (x − x0)2 + · · · + f (m)(x0)

m! (x − x0)m + Rm(x),

where f (m) denotes the m-th derivative of f and

Rm(x) = f (m+1)(ξ)
(m + 1)! (x − x0)m+1,

for some ξ lying strictly between x and x0.

Theorem 4.5 (Newton’s method). If f is smooth and the initial guess x0 is sufficiently
close to the root x, then Newton’s method converges quadratically; that is, for some
K > 0,

en+1 = |xn+1 − x| ≤ K|xn − x|2 = Ke2
n,

where en = |xn − x| represents the error at step n.

Proof. Use Taylor’s theorem, to write

g(y) = g(x) + g′(x)(y − x) + 1
2g′′(ξ)(y − x)2

for some ξ. We know from the calculation in (28) that g′(x) = 0 and hence

g(y) − g(x) = g(y) − x = 1
2g′′(ξ)(y − x)2.

We know that the FP theorem applies in some interval [a, b] = [x − ϵ, x + ϵ]. Hence,
if x0 ∈ [a, b] then so does xn for n ∈ N. Hence, it is enough to take y ∈ [a, b] and
also ξ ∈ [a, b]. Let K := 1

2 maxξ∈[a,b] |g′′(ξ)|, which is finite as g is smooth. Then, with
y = xn, we have

|xn+1 − x| ≤ K|xn − x|2,
thus concluding the proof.

Example 4.3. Note that f(π) = 0 for f(x) = sin(x). Newton’s method is the iteration

xn+1 = xn − sin(xn)
cos(xn) = xn − tan(xn).

Then, we take an initial condition x0 = 3 and

x1 = 3.142546543074278, x2 = 3.141592653300477, x3 = 3.141592653589793

by iterating the Python code x = x - np.tan(x). The example illustrates nicely
quadratic convergence and we see the number of correct digits increases rapidly (3, 10,
11 digits; the last one is affected by rounding error).

26

5 Numerical linear algebra
Problem For a given d × d matrix A and vector b⃗ ∈ Rd, find x⃗ ∈ Rd such that Ax⃗ = b⃗.
If the entries of A are aij (row i, column j) and the entries of x⃗ and b⃗ are xj and bj,
this means

d∑
j=1

aijxj = bi, i = 1, · · · , d.

You have studied already row-reduction techniques. In numerical analysis, these are
developed in a way to improve numerical stability into the standard technique “Gaussian
elimination with partial pivoting”. This is an example of a direct method and this
means the solution x is found by a finite number of arithmetic operations. Packages
such as scipy.linalg use Gaussian elimination to find an LU factorisation.

Definition 5.1. A matrix P is a permutation matrix if each row and column has
exactly one non-zero entry equal to one; multiplication by a permutation matrix P in
PA permutes the rows of A.

A matrix L is lower triangular if Lij = 0 for i < j and unit lower triangular if additionally
Lii = 1. A matrix U is upper triangular if Uij = 0 for i > j.

The LU factorisation consists of a permutation matrix P , a unit lower-triangular matrix
L, and an upper-triangular matrix U such that PA = LU ; this can be found in Python
using P, L, U = scipy.linalg.lu(A). For example,

L =

 1 0 0
0 1 0

1/2 1/2 1

 , U =

4 −1 1
0 −1 2
0 0 −3/2

 , P =

0 1 0
0 0 1
1 0 0


is an LU factorisation of

A =

2 −1 0
4 −1 1
0 −1 2

 .

You should verify that PA = LU . The entries of L and U express the row reductions
normally performed in Gaussian elimination. We do not show how to compute L and U
in detail by hand. There are many matrix factorisation in numerical linear algebra and
this one is useful for solving linear systems of equations.

Example 5.1 (LU factorisation). To solve a linear system of equations with the LU
factorisation, substitute PA = LU into the linear system Ax⃗ = b⃗:

PAx⃗ = LUx⃗ = P b⃗.

Let y⃗ := Ux⃗. Given b⃗ ∈ Rd, we solve the triangular system

Ly⃗ = P b⃗, to find y⃗ ∈ Rd

27

and
Ux⃗ = y⃗, to find x⃗ ∈ Rd.

We have replaced the problem of solve Ax⃗ = b⃗ by solving two much simpler linear
systems. Both matrices are triangular and their solution is easily found by forward or
backward substitution.

We spend most of our time studying iterative methods, where x⃗ occurs as the limit of
approximations x⃗n as n → ∞. In general, direct methods (such as the LU factorisation
or Gaussian elimination) are good for dense matrices (where aij ≠ 0 for nearly all i, j)
and the complexity of such a linear solve is O(d3). If d is very large, it may be impossible
to store A in memory and to perform row reductions. On the other hand, the matrix
may be sparse (aij = 0 for many i, j) and it may be easy to compute matrix-vector
products Ax⃗. In this case, iterative methods are valuable.

We will work with the following example of a sparse matrix throughout.

Example 5.2 (finite-difference matrix). Suppose that u is a smooth real-valued function
on [0, 1] and we want to approximate its second derivative based on evaluations on the
mesh xi = ih for some mesh spacing h = 1/(d + 1). By Taylor’s theorem,

u(x + h) = u(x) + hu′(x) + 1
2h2u′′(x) + 1

6h3u′′′(x) + O(h4),

u(x − h) = u(x) − hu′(x) + 1
2h2u′′(x) − 1

6h3u′′′(x) + O(h4).

Then,
u′′(x) = u(x + h) − 2u(x) + u(x − h)

h2 + O(h2).

By dropping the O(h2) term, we have a finite-difference approximation to the second
derivative. This can be used to find an approximate solution to the two-point boundary
value problem: for a given function f : [0, 1] → R, find u(x) such that

−u′′(x) = f(x), u(0) = u(1) = 0.

Using the finite-difference approximation,

−


u′′(x1)
u′′(x2)

...
u′′(xd)

 = 1
h2 A


u(x1)
u(x2)

...
u(xd)

+ O(h2)

for

A :=


2 −1

−1 2 −1
.

−1 2

 . (29)

28

Then u′′(x) = −f(x) gives 1
h2 Au⃗ = f if we neglect the O(h2) term, for

f :=


f(x1)
f(x2)

...
f(xd)

 , u⃗ :=


u(x1)
u(x2)

...
u(xd)

 . (30)

We have a linear system of equations that can be solved to determine an approximate
solution of the boundary-value problem.

Only the main and two off-diagonals of A are non-zero. All other entries are zero and
the matrix is sparse. We will use the finite-difference matrix A as a prototype example
as we develop iterative methods. The matrix is typical of the ones that arise in the
numerical solution of PDEs.

5.1 Iterative methods
Suppose we wish to solve Ax⃗ = b⃗ for x⃗ ∈ Rd given a d × d matrix A and b⃗ ∈ Rd. Write
A = A1 − A2 so that

A1x⃗ = A2x⃗ + b⃗.

This motivates the following iterative method: find x⃗n+1 such that

A1x⃗n+1 = A2x⃗n + b⃗.

When x⃗n is known and A1 is well chosen, we easily find x⃗n+1 and generate a sequence
x⃗1, x⃗2, . . . that we hope converges to the solution x⃗. We can interpret this as a fixed-point
iteration and

x⃗n+1 = g⃗(x⃗n), g⃗(x⃗) := A−1
1 (A2x⃗ + b⃗),

where we assume the inverse matrix A−1
1 exists.

Example 5.3 (Jacobi). Let A1 denote the diagonal part of A and A2 = A1 − A =
−(L + U) (for the lower- and upper-triangular parts L and U of A). Take for example

A =
[

2 −1
−1 2

]
, A1 =

[
2 0
0 2

]
, A2 =

[
0 1
1 0

]
.

The Jacobi iteration is [
2 0
0 2

]
x⃗n+1 =

[
0 1
1 0

]
x⃗n + b⃗

or
x⃗n+1 =

[
0 1/2

1/2 0

]
x⃗n + 1

2 b⃗.

Notice how simple it is to evaluate the right-hand side given x⃗n and b⃗.

29

For the finite-difference example (29), the Jacobi method is

x⃗n+1 = 1
2



0 1
1 . . . 1

.
1

1

 x⃗n + 1
2 b⃗. (31)

Even when d is large, the right-hand side is cheap to compute and the matrix-vector
product is easy to evaluate without storing the sparse matrix.

Example 5.4 (Gauss-Seidel). Let A1 = D + L (the diagonal and lower-triangular part)
and A2 = −U . For the finite-difference matrix,


2

−1 2
−1 2

.


︸ ︷︷ ︸

=A1

x⃗n+1 =


0 1

. . . 1
1
. . .


︸ ︷︷ ︸

=A2

x⃗k + b⃗

This time a linear solve is required. As the matrix on the left-hand side is lower
triangular, this can be done efficiently to find x⃗n+1.

We now develop some tools for understanding the convergence of iterative methods.

5.2 Vector and matrix norms
To understand convergence of x⃗n, we introduce a way to measure distance on Rd. It
turns out to be very convenient to have more than one measurement of distance.

Definition 5.2 (vector norm). A vector norm on Rd is a real-valued function ∥ · ∥ on
Rd such that

a) ∥x⃗∥ ≥ 0 for all x⃗ ∈ Rd,
b) ∥x⃗∥ = 0 if and only if x⃗ = 0⃗,
c) ∥αx⃗∥ = |α| ∥x⃗∥ for α ∈ R, and
d) ∥x⃗ + y⃗∥ ≤ ∥x⃗∥ + ∥y⃗∥ for all x⃗, y⃗ ∈ Rd (the triangle inequality).

The standard Euclidean norm ∥x⃗∥2 :=
(
x⃗Tx⃗

)1/2
≡
(
x2

1 + · · · + x2
d

)1/2
satisfies these

conditions and is a vector norm. The conditions (a–c) are easy to verify. The last one

30

follows from the Cauchy-Schwarz inequality, which says that x⃗Ty⃗ ≤ ∥x⃗∥2∥y⃗∥2 and so

∥x⃗ + y⃗∥2
2 = (x⃗ + y⃗)T(x⃗ + y⃗)

= x⃗Tx⃗ + 2x⃗Ty⃗ + y⃗Tx⃗

≤ ∥x⃗∥2
2 + 2∥x⃗∥2∥y⃗∥2 + ∥y⃗∥2

2

=
(
∥x⃗∥2 + ∥y⃗|2

)2
.

We will make use of two more examples:

∥x⃗∥∞ := max
j=1,...,d

|xj|, ∥x⃗∥1 :=
d∑

j=1
|xj|.

Don’t forget the absolute-value signs on the right-hand side! Verification of the norm
axioms is straightforward here.

These give different numbers and, for x⃗ = (−1, 1, 2)T, we get

∥x⃗∥2 =
√

6, ∥x⃗∥1 = 4, ∥x⃗∥∞ = 2.

We also need to measure matrices. The obvious way to do this is to treat a d × d matrix
as a d2 vector and thereby inherit the norms defined for vectors. This does not say
anything about the multiplicative nature of matrices and so we develop the following
concept.

Definition 5.3 (matrix norm). A matrix norm ∥A∥ of a d × d matrix A is a real-valued
function on Rd×d such that

a) ∥A∥ ≥ 0 for all A ∈ Rd×d,
b) ∥A∥ = 0 if and only if A = 0,
c) ∥αA∥ = |α| ∥A∥ for α ∈ R,
d) ∥A + B∥ ≤ ∥A∥ + ∥B∥ (the triangle inequality) and
e) ∥AB∥ ≤ ∥A∥ ∥B∥ for all A, B ∈ Rd×d.

Conditions (a–d) correspond to the ones for vector norms. The last, the sub-multiplicative
condition, relates to matrix products.

Vector norms lead naturally to a corresponding matrix norm, known as the subordinate
or operator norm.

Definition 5.4. The operator norm ∥A∥op with respect to a vector norm ∥x⃗∥ is defined
by

∥A∥op := sup
x̸⃗=0

∥Ax⃗∥
∥x⃗∥

.

Equivalently, because of condition (c),

∥A∥op = sup
∥x⃗∥=1

∥Ax⃗∥

31

(sup means least upper bound or roughly “the maximum”. However, since the hypersphere
{x⃗ : ∥x⃗∥ = 1} is compact, the supremum in this case can be replaced by a maximum.).

The operator norm describes the maximum stretch that can be achieved by multiplication
by A.

Theorem 5.1. The operator norm ∥A∥op is a matrix norm

Proof. We show (e). As ∥A∥op = sup ∥Ax⃗∥/∥x⃗∥, we have

∥Ax⃗∥ ≤ ∥A∥op∥x⃗∥ (32)

for any x⃗ ∈ Rd. Then, applying (32) twice,

∥ABx⃗∥ ≤ ∥A∥op∥Bx⃗∥ ≤ ∥A∥op∥B∥op∥x⃗∥.

Hence,
∥AB∥op = sup

∥x⃗∥=1
∥ABx⃗∥ ≤ ∥A∥op∥B∥op.

The remaining conditions are left for a problem sheet.

Let ∥A∥1 be the operator norm associated to the vector norm ∥x⃗∥1, and ∥A∥∞ be the
operator norm associated to the vector norm ∥x⃗∥∞.

Theorem 5.2. Let A be an d × d matrix. Then,

∥A∥1 = max
j=1,...,d

d∑
i=1

|aij|, maximum column sum

∥A∥∞ = max
i=1,...,d

d∑
j=1

|aij|, maximum row sum.

To remember which way round it is, ∥A∥1 is the maximum column sum and the subscript
1 looks like a column. Don’t forget the absolute-value signs!

Proof. We prove that
∥A∥∞ = max

i

∑
j

|aij| =: f(A).

The argument for ∥A∥1 is similar and addressed on the problem sheet. We divide and
conquer, first showing that ∥A∥∞ ≤ f(A) and then ∥A∥∞ ≥ f(A).

To show that ∥A∥∞ ≤ f(A), consider x⃗ ∈ Rd with ∥x⃗∥∞ = 1. Then, |xi| ≤ 1 for all
i = 1, . . . , d and hence∣∣∣∣∣

d∑
j=1

aij xj

∣∣∣∣∣ ≤
d∑

j=1
|aij xj| ≤

d∑
j=1

|aij| ≤ f(A).

32

That is, the ith entry of Ax⃗ is smaller (in absolute value) than f(A). Hence, ∥Ax⃗∥∞ ≤
f(A).

To show that ∥A∥∞ ≥ f(A), suppose that f(A) = ∑
j |aij| (i.e., row i has the maximum

sum). Let

xj :=
+1, aij ≥ 0,

−1, aij < 0.

Clearly then ∥x⃗∥∞ = 1 and

Ax⃗ =



×
×
...∑

j aijxj

×

 =



×
×
...∑

j |aij|
×

 =



×
×
...

f(A)
×

 ,

where we write the ith row only. The magnitude of the largest entry of Ax⃗ is at least
f(A) and

∥Ax⃗∥∞ ≥ f(A),
completing the proof.

Both these operator norms are very easy to compute.

Example 5.5. Let

A =

3 −8 −9
1 −2 0
9 −14 6

 .

Then ∥A∥1 = max{13, 24, 15} = 24 and ∥A∥∞ = max{20, 3, 29} = 29.

The matrix 2-norm ∥A∥2 induced by the Euclidean vector norm ∥x⃗∥2 is much harder to
understand. We quote the following theorem:

Theorem 5.3. Let A be a d × d matrix; then

∥A∥2 =
√

ρ(ATA), (33)

where ρ(B) is the spectral radius or size of the largest eigenvalue defined by

ρ(B) := max{|λ| : λ is an eigenvalue of B so that Bu⃗ = λu⃗ for some u⃗ ̸= 0⃗}.

When A is symmetric, we have simply that

∥A∥2 = ρ(A).

33

The proof of (33) is not covered. In the symmetric case, A = AT and, if λ is an
eigenvalue of A, then λ2 is an eigenvalue of ATA = A2. We expect ρ(ATA) = ρ(A)2.

Eigenvalues of large matrices are difficult to compute, though we can easily do it for a
2 × 2 example.

Example 5.6. Let

A =
[
3 1
0 1

]
, ATA =

[
9 3
3 2

]
.

The eigenvalues λ are the solutions of

det(A − λI) = det
∣∣∣∣∣9 − λ 3

3 2 − λ

∣∣∣∣∣ = (9 − λ)(2 − λ) − 9 = λ2 − 11λ + 9 = 0.

The quadratic equation formula gives λ = (11 ±
√

121 − 36)/2 and ∥A∥2 = ρ(A) =√
(11 +

√
85)/2.

Example 5.7. Recall the d × d finite-difference matrix

A =


2 −1

−1 2 −1
.

 .

We find the eigenvalues of A, which allows us to find ∥A∥2. Let h := 1/(d + 1) and
u⃗k := (sin kπh, sin 2kπh, . . . , sin dkπh)T ∈ Rd.

We show that u⃗k is an eigenvector of A. The jth component of Au⃗k is
(Au⃗k)j = 2 sin(jkπh) − sin((j − 1)kπh) − sin((j + 1)kπh),

where we use sin((j − 1)kπh) = 0 for j = 1 and sin((j + 1)kπh) = sin(kπ) = 0 for j = d.

The trig identity sin(X + Y) = cos X sin Y + cos Y sin X gives
(Au⃗k)j = 2 sin(jkπh) − (cos(kπh) sin(jkπh) − cos(jkπh) sin(kπh))

− (cos(kπh) sin(jkπh) + cos(jkπh) sin(kπh))
= 2(1 − cos kπh) sin(jkπh)
= λk × the jth component of u⃗k,

where λk := 2(1 − cos(kπh)). In other words, λk is an eigenvalue of A with eigenvector
u⃗k. This gives d distinct eigenvalues for A. We conclude that

ρ(A) = max{λk : k = 1, . . . , d} = 2
(

1 − cos dπ

d + 1

)
.

As A is symmetric, Theorem 5.3 gives

∥A∥2 =
√

ρ(ATA) = ρ(A) = 2
(

1 − cos dπ

d + 1

)
.

34

5.3 Convergence of iterative methods
If A = D + L + U (sum of diagonal and lower- and upper-triangular parts), the Jacobi
method is

Dx⃗n+1 = −(L + U)x⃗n + b⃗

and the Gauss-Seidel method is

(L + D)x⃗n+1 = −Ux⃗n + b⃗.

If D is non-singular, both can be written

x⃗n+1 = T x⃗n + c⃗

where

T = TJ := −D−1(L + U), c⃗ = D−1⃗b, Jacobi,
T = TGS := −(L + D)−1U, c⃗ = (L + D)−1⃗b, Gauss-Seidel.

Lemma 5.1. Suppose that A and D are non-singular. Consider T = TJ or T = TGS.
Then x⃗ is the solution of Ax⃗ = b⃗ if and only if x⃗ = g⃗(x⃗) := T x⃗ + c⃗ (i.e., x⃗ is a fixed
point of g⃗; see Definition 4.1).

Proof. Elementary.

Theorem 5.4. Suppose that the conditions of Lemma 5.1 hold, so that Ax⃗ = b⃗ has a
unique solution x⃗. Suppose that x⃗n is a sequence in Rd generated by

x⃗n+1 = T x⃗n + c⃗,

for some initial vector x⃗0. Then,

∥x⃗n − x⃗∥ ≤ ∥T∥n
op∥x⃗0 − x⃗∥,

where ∥T∥op is the operator norm associated to a vector norm ∥x⃗∥.

Proof. We have x⃗n+1 = T x⃗ + c⃗ and x⃗ = T x⃗ + c⃗; then

x⃗n+1 − x⃗ = (T x⃗n − T x⃗) + (c⃗ − c⃗).

Apply the vector norm:
∥x⃗n+1 − x⃗∥ = ∥T x⃗n − T x⃗∥.

Using (32),
∥x⃗n+1 − x⃗∥ ≤ ∥T∥op ∥x⃗n − x⃗∥.

As simple induction argument shows that ∥x⃗n − x⃗∥ ≤ ∥T∥n
op∥x⃗0 − x⃗∥.

35

Corollary 5.1. If ∥T∥op < 1, then x⃗n converges to x⃗ as n → ∞. The convergence is
linear (see Definition 4.2); that is, ∥x⃗n+1 − x⃗∥ ≤ K∥x⃗n − x⃗∥ for K = ∥T∥op < 1.

When ∥T∥op is small, the convergence is more rapid and this is desirable in numerical
calculations.

In finite dimensions, it turns out that all norms are equivalent and any operator norm
can be used as long as ∥T∥op < 1.

An alternative characterisation of convergence can be given in terms of eigenvalues.

Corollary 5.2. The sequence x⃗n given by x⃗n+1 = T x⃗n + c⃗ converges to the fixed point x⃗
satisfying x⃗ = T x⃗ + c⃗ for any x⃗0 ∈ Rd if ρ(T) < 1.

Proof. This is a corollary of Theorem 5.4 when T is symmetric as ρ(T) = ∥T∥2.

Suppose for simplicity that T has d distinct eigenvalues λj with corresponding eigenvec-
tors u⃗j, so that T u⃗j = λju⃗j. Then, u⃗j is a basis for Rd and

x⃗0 − x⃗ =
d∑

j=1
αju⃗j,

for some αj ∈ R. Let e⃗n = x⃗n − x⃗. Then, e⃗n+1 = T e⃗n and

e⃗n = T ne⃗0 = T n
d∑

j=1
αju⃗j =

d∑
j=1

αjT
nu⃗j =

d∑
j=1

αjλ
nu⃗j.

If ρ(T) < 1 then all eigenvalues λ satisfy |λ| < 1. Hence, λn → 0 as n → ∞. Thus
e⃗n → 0 as n → ∞ and the iterative method converges.

The case where the eigenvalues of T are not distinct is omitted.

Example 5.8. Consider 8 −1 0
1 5 2
0 2 4

 x⃗ = b⃗ =

1
2
3

 .

The Jacobi iteration is8 0 0
0 5 0
0 0 4

 x⃗n+1 =

 0 1 0
−1 0 −2
0 −2 0

 x⃗n +

1
2
3


and

TJ =

8 0 0
0 5 0
0 0 4


−1  0 1 0

−1 0 −2
0 −2 0

 =

 0 1/8 0
−1/5 0 −2/5

0 −1/2 0

 .

36

Then,
∥TJ∥∞ = max

{1
8 ,

3
5 ,

1
2

}
= 3

5 , max row sum

∥TJ∥1 = max
{1

5 ,
5
8 ,

2
5

}
= 5

8 , max column sum.

The matrix norms are less than one and the Jacobi iteration converges for this example.

Example 5.9 (finite-difference matrix). Recall the Jacobi iteration for the finite-
difference matrix (31). Then, x⃗n+1 = T x⃗n + c⃗ for

T = 1
2



0 1
1 . . . 1

.
1

1 0

 , c⃗ = 1
2 b⃗.

Note that ∥T∥∞ = ∥T∥1 = 1 so that Corollary 5.1 does not apply. We work out the
eigenvalues similarly to Example 5.7. Let u⃗k = [sin(kπh), sin(2kπh), . . . , sin(dkπh)]T for
h = 1/(d + 1). Then, the jth component of T u⃗k is 1

2(sin(j − 1)kπh) + sin(j + 1)kπh)
and, by applying a trig identity, this is cos(kπh) sin(jkπh). Thus, λk = cos(kπh) for
k = 1, . . . , d are the eigenvalues of T and, as |λk| < 1, the convergence of the Jacobi
iteration follows for the finite-difference matrix.

Note however that ρ(T) = max{cos(kπh) : k = 1, . . . , d} → 1 as h → 0 as cos(πh) ≈ 1
for h ≈ 0. This means when h is small the Jacobi iteration converges slowly. This is a
significant problem in applications where small h corresponds to accurate resolution of
the underlying physics. In other words, the more accurate our discretisation the slower
the Jacobi iteration is.

For convergence of Gauss-Seidel with the finite-difference matrix, see Problem Sheets.

5.4 Condition number
We’d like to estimate the error in the approximation when solving a linear system. Our
methods provide a computed value x⃗c that we hope approximates the solution x⃗ of
Ax⃗ = b⃗. We cannot evaluate a norm for x⃗c − x⃗ as x⃗ is usually unknown. What we do
have is the residual defined by

r⃗ := Ax⃗c − b⃗.

Note that
r⃗ := Ax⃗c − Ax⃗ = A(x⃗c − x⃗)

and x⃗c − x⃗ = A−1r⃗. Apply (32) to get

∥x⃗c − x⃗∥ ≤ ∥A−1∥op∥r⃗∥.

37

Furthermore, Ax⃗ = b⃗ gives

∥⃗b∥ = ∥Ax⃗∥ ≤ ∥A∥op ∥x⃗∥.

Dividing the two expressions,

∥x⃗c − x⃗∥
∥A∥op ∥x⃗∥

≤ ∥A−1∥op ∥r⃗∥
∥⃗b∥

.

Rearranging we get

∥x⃗c − x⃗∥
∥x⃗∥︸ ︷︷ ︸

relative error

≤ ∥A−1∥op ∥A∥op︸ ︷︷ ︸
condition number

∥r⃗∥
∥⃗b∥

.︸ ︷︷ ︸
relative residual

Thus, the relative error is bounded by a constant times the relative residual. The
constant is known as the condition number:

Definition 5.5 (condition number). The condition number of a non-singular matrix A
is defined by

Cond(A) := ∥A∥op ∥A−1∥op.

Each choice of operator norm ∥A∥op gives a different condition corresponding to the
choice of vector norm ∥x⃗∥ above and Cond1(A), Cond2(A), Cond∞(A) denote the
condition numbers with respect to the 1-, 2-, and ∞-norms. Often κ(A) is used to
denote the condition number.

The condition number is a widely used measure of the difficulty of solving Ax⃗ = b⃗.
When Cond(A) is large, it may be impossible to get accurate results.

Example 5.10. Returning to (1), we have

A =
[
ϵ 1
0 1

]
, A−1 = 1

ϵ

[
1 −1
0 ϵ

]
.

Suppose that 0 < ϵ < 1. Then, ∥A∥1 = 2 and ∥A−1∥1 = (1+ ϵ)/ϵ and hence Cond1(A) =
2(1 + ϵ)/ϵ. This is large when ϵ is small and the matrix is ill-conditioned. This reflects
the sensitivity of x⃗ to changes in b⃗ found when solving Ax⃗ = b⃗ in (1).

Example 5.11 (Hilbert matrix). Refer back to Problem Sheet 1 where we performed
experiments with the Hilbert matrix A, which is the d × d matrix with (i, j) entry
1/(i+j −1). We found that it was difficult to solve the linear system of equations Ax⃗ = b⃗

for a given b⃗ ∈ Rd if d is moderately large (e.g., d = 10). In Python, numpy.linalg
provides the command cond for finding the condition number. We apply this to the
Hilbert matrix

38

from numpy.linalg import cond
from scipy.linalg import hilbert
d = 4
A = hilbert(d)
cond_A = cond(A,p=1)
print(A, cond_A)

The output is

[[1. 0.5 0.33333333 0.25]
[0.5 0.33333333 0.25 0.2]
[0.33333333 0.25 0.2 0.16666667]
[0.25 0.2 0.16666667 0.14285714]]

28374.99999999729

Repeating this experiment for d = 6 we find a condition number of 2.9070 × 107; for
d = 8, the condition number is 3.3872 × 1010; for d = 10, the condition number is
3.534 × 1013. Even for small systems (problem in real-world applications can be easily
have millions of unknowns), the condition number is extremely large.

5.4.1 Second derivation of cond(A)

Suppose that
Ax⃗ = b⃗, (A + ∆A)x⃗c = b⃗,

where ∆A can be thought as the effects of rounding error. Then,

x⃗ = A−1⃗b = A−1(A + ∆A)x⃗c = x⃗c + A−1∆Ax⃗c .

Hence,
x⃗ − x⃗c = A−1∆Ax⃗c .

Applying norms, we find that

∥x⃗ − x⃗c∥ ≤ ∥A−1∥op∥∆A∥op∥x⃗c∥.

We can rewrite this in terms of the condition number:
∥x⃗ − x⃗c∥

∥x⃗c∥
≤ Cond(A)∥∆A∥op

∥A∥op
.

The relative error is less than the condition number times the size of the relative change
in A.

Example 5.12 (finite-difference matrix). Let A be the d × d finite-difference matrix of
Example 5.2. Then, Cond2(A) is easy to find, because we know all the eigenvalues of
A. The eigenvalues of A−1 are simply λ−1 where λ is an eigenvalue of A. So, as A is
symmetric,

Cond2(A) = ∥A∥2∥A−1∥2 = ρ(A)ρ(A−1).

39

The eigenvalues are λk = 2(1−cos(kπh)). Note that λk increases from λ1 = 2(1−cos(πh))
to λd = 2(1 − cos(dπ/(d + 1))). Then, ρ(A) = 2(1 − cos(dπ/(d + 1)) and ρ(A−1) =
1/(2(1 − cos(hπ))), and

Cond2(A) = 1 − cos(dπ/(d + 1))
1 − cos(πh) → ∞, as h ↓ 0.

In other words, the finite-difference matrix becomes more ill-conditioned as we make
h small and approximate the second derivative accurately. This is a common problem
when approximating PDEs numerically.

5.5 Beyond square matrices
5.5.1 Least squares problems

Suppose we have a more general linear system,

Ax⃗ = b⃗, (34)

where A ∈ Rm×n, x⃗ ∈ Rn and b⃗ ∈ Rm. In general, the system (34) will have no
solutions if m > n (i.e. it is overdetermined) or infinitely many if m < n (i.e. it is
underdetermined).

Systems of the form (34) frequently occur when we collect m observations (which can
be prone to measurement error) and wish to describe them through an n-variable linear
model. In statistics, where we typically have n ≪ m, this is called linear regression.

Definition 5.6 (least squares problem). Given A ∈ Rm×n and b⃗ ∈ Rm, a vector x⃗ ∈ Rn

solves the least squares problem if it minimises ∥Ax⃗ − b⃗∥2 .

Fortunately, we can solve the least squares problem by considering a specific n × n linear
system!

Theorem 5.5. The vector x⃗ ∈ Rn is a solution of the least squares problem if and only
if

AT
(
Ax⃗ − b⃗

)
= 0.

Proof. If x⃗ ∈ Rn is a solution of the least squares problem then it minimises

f(x⃗) := ∥Ax⃗ − b⃗∥2
2 =

〈
Ax⃗ − b⃗, Ax⃗ − b⃗

〉
= x⃗TATA x⃗ − 2x⃗TATb⃗ + b⃗Tb⃗ .

Since f is smooth, it follows that ∇f(x⃗) = 0. Computing the gradient of f gives

∇f(x⃗) = 2
(
ATA x⃗ − ATb⃗

)
,

and thus AT
(
Ax⃗ − b⃗

)
= 0.

40

Conversely, suppose AT
(
Ax⃗ − b⃗

)
= 0 and let u⃗ ∈ Rn. Letting y⃗ := u⃗ − x⃗, we have

∥Au⃗ − b⃗∥2
2 = ∥Ax⃗ + Ay⃗ − b⃗ ∥2

2

= ⟨Ax⃗ − b⃗ + Ay⃗, Ax⃗ − b⃗ + Ay⃗ ⟩
= ⟨Ax⃗ − b⃗, Ax⃗ − b⃗ ⟩ + 2y⃗T AT(Ax⃗ − y⃗)︸ ︷︷ ︸

=0

+⟨Ay⃗, Ay⃗ ⟩

= ∥Ax⃗ − b⃗∥2
2 + ∥Ay⃗∥2

2 ≥ ∥Ax⃗ − b⃗∥2
2 .

Thus, u⃗ minimises the left-hand side at x⃗.

Therefore, we can solve the least squares problem simply by solving the normal
equations: (

ATA
)
x⃗ = AT b⃗. (35)

Definition 5.7. The matrix ATA ∈ Rn×n appear in the normal equations is often called
the Gram matrix.

Example 5.13. Consider the least-squares problem

min
x⃗∈R2

∥Ax⃗ − b⃗∥2 , where A =

1 2
3 4
5 6

 , b⃗ =

7
8
9

 .

Then we can find x⃗ by solving

ATAx⃗ = ATb⃗ ⇐⇒
[
1 3 5
2 4 6

] 1 2
3 4
5 6

 x⃗ =
[
1 3 5
2 4 6

] 7
8
9


⇐⇒

[
35 44
44 56

]
x⃗ =

[
76
100

]

⇐⇒ x⃗ =
[
−6
6.5

]
.

However, this can come with potential disadvantages:

• ATA may be singular or ill-conditioned, e.g.

[
a b

]T [
a b

]
=
[
a2 ab
ab b2

]
,

[
ϵ 1
0 1

]T [
ϵ 1
0 1

]
=
[
ϵ2 ϵ
ϵ 2

]
.

41

• ATA may encounter rounding errors which A does not, e.g.

A =
[
108 −108

1 1

]
=⇒ ATA =

[
1016 + 1 −1016 + 1

−1016 + 1 1016 + 1

]
≈ 1016

[
1 −1

−1 1

]
.

• In practice, a sparse matrix A usually results in sparse ATA. However, this is not
guaranteed (e.g. if A contains a dense row).

Therefore, an alternative is to consider a slightly modified least squares problem.

Theorem 5.6. Let Ω ∈ Rm×m be an arbitrary orthogonal matrix. That is, ΩTΩ = I =
ΩΩT. Then the vector x⃗ ∈ Rn is a solution of the least squares problem if and only if it
minimises ∥∥∥ΩAx⃗ − Ω⃗b

∥∥∥
2
.

Proof. The result follows as∥∥∥ΩAx⃗ − Ω⃗b
∥∥∥2

2
=
(
ΩAx⃗ − Ω⃗b

)T(
ΩAx⃗ − Ω⃗b

)
= (Ax⃗ − b⃗) ΩTΩ︸ ︷︷ ︸

=I

(Ax⃗ − b⃗) = ∥Ax⃗ − b⃗∥2
2.

.

Therefore, inspired by the previous theorem, we need to find a good choice for Ω.

Theorem 5.7 (QR decomposition). Let A ∈ Rm×n with m ≥ n. Then, there exist an
orthogonal matrix Q ∈ Rm×m and an upper triangular matrix R ∈ Rn×n such that

A = QR̃,

where R̃ :=
[
R
0

]
∈ Rm×n.

Proof. Not covered, though QR decompositions can be computed using the Gram-
Schmidt procedure.

Therefore, if R is invertible (i.e. has non-zero diagonal entries), then we can solve the
least squares problem as

1. Factorise A = QR̃.

2. Set Ω = QT, and note that the new least squares problem given by Theorem 5.6
becomes

min
x⃗∈Rn

∥∥∥ΩAx⃗ − Ω⃗b
∥∥∥

2
= min

x⃗∈Rn

∥∥∥ QTQ︸ ︷︷ ︸
= I

R̃x⃗ − QTb⃗
∥∥∥

2
= min

x⃗∈Rn

∥∥∥ R̃x⃗ − QTb⃗
∥∥∥

2
.

42

3. Solve Rx⃗ = c⃗, where c⃗ ∈ Rn is defined as the first n entries of QTb⃗. Since R
is upper triangular, this can be done efficiently (just like for the Gauss-Seidel
method).

.

Two important questions beyond the scope of this unit

• How are QR decompositions actually computed?

• What should we do if the matrix R is singular?

Unsurprisingly, addressing either question for large matrices can be challenging!

For further details regarding the QR decomposition, we refer to johnwlambert.github.io/least-
squares. Alternatively, you can choose “Numerical Linear Algebra” (MA32065) next
year!

5.5.2 The singular value decomposition (SVD)

In addition to encoding linear transformations, matrices can also represent data in a
wide variety of scientific applications. For example,

• Images – which are simply matrices of pixels. For a grayscale image, each pixel
is just a single number, taking integer values between 0 and 255, which denote
the 256 shades of gray (with 0 being full black, and 255 being full white). Colour
images are slightly more complicated with each pixel consisting of three colours
(red, green and blue). Whilst essential to the entertainment industry, images are
also used to represent spatial data in STEM fields. However, processing, storing
and extracting information from images (particularly high resolution ones) can be
challenging. This naturally leads to image compression.

Figure 6: Magnetic Resonance Imaging (MRI) is an important application of image
data in healthcare.

43

https://johnwlambert.github.io/least-squares/
https://johnwlambert.github.io/least-squares/

• Datasets of vectors. In practice, data is usually stored as vectors x⃗ ∈ Rm. For
example, the following graph illustrates data with m = 5 (corresponding to “GDP
per capita”, “life expectancy”, “name of country”, “population of country” and
“date”).

Figure 7: GDP data for different countries (each with its own colour) across time. Each
dot represents a country on a specific date with the dot’s size corresponding to its
population.

Therefore, we can represent a dataset of n vectors {x⃗1, · · · , x⃗n} simply as an m × n
matrix,

X :=
[
x⃗1 x⃗2 · · · x⃗n

]
=


x1,1 x2,1 · · · xn,1
x1,2 x2,2 · · · xn,2

...
x1,m x2,m · · · xn,m

 .

However, just as with images, it can be difficult to extract the key information from
X (particularly if m and n are large). Thus, we are interested in dimensionality
reduction and data compression more generally.

In this subsubsection, we will introduce the singular value decomposition (SVD) – which
is widely considered to be the most important topic in numerical linear algebra. The
SVD can be applied to any matrix, square or rectangular, and is the most prominent
technique for matrix compression. Most notably, the SVD is used throughout data
science for performing Principal Component Analysis (PCA).

44

Since the SVD has strong connections to symmetric eigenvalue problems, let us first
recall the following theorem:

Theorem 5.8 (Symmetric eigenvalue decomposition). Let A ∈ Rn×n be a symmetric
matrix. Then A admits the following matrix decomposition:

A = V ΛV T, (36)
where V ∈ Rn×n is orthogonal, V TV = I = V V T, and Λ = diag(λ1, · · · , λn) is a
diagonal matrix of eigenvalues λi ∈ R.

In (36), λi are the eigenvalues and V is the matrix of eigenvectors (that is, its columns
are eigenvectors).

It is worth noting that Theorem 5.8 is making two very strong claims. Namely, (a) the
eigenvectors can be taken to be orthogonal and (b) the eigenvalues are real.

The decompoition (36) is not unique. We can always flip the sign of eigenvectors and if
λi = λj for some i ̸= j, then the eigenvectors will span a subspace (whose dimension
is the multiplicity of the eigenvalue). For example, any vector is an eigenvector of the
identity matrix.

Before proceeding to our main theorem, we first recall the following key definitions.

Definition 5.8. The column rank of a matrix A =
[⃗
a1 · · · a⃗n

]
∈ Rm×n is the

dimension of its column space span({a⃗1, · · · , a⃗n}). Similarly, we can define the row
rank of A as the dimension of its row space. It is a theorem that these ranks coincide
and can thus unambiguously be called the rank of A.

Definition 5.9. A matrix A ∈ Rm×n is said to have full rank if its rank equals
min(n, m).

We now present one of the most important results in numerical linear algebra – the
Singular Value Decomposition. Note: we will only be proving this when A has full rank.

Theorem 5.9 (Singular Value Decomposition (SVD)). Let A ∈ Rm×n with m ≥ n.
Then there exists U ∈ Rm×m, Σ ∈ Rn×n and V ∈ Rn×n such that

A = U

[
Σ
0

]
V T, (37)

where U is orthogonal (i.e. UTU = UUT = Im), V is orthogonal (i.e. V TV = V V T = In)
and Σ = diag(σ1, . . . , σn) with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Remark. The SVD easily applies to m × n matrices with m < n simply by taking the
transpose of (37). In a slight change of notation, it is more common to write the SVD
(37) as

A = UΣV T, (38)
where Σ ∈ Rm×n is still referred to as a diagonal matrix. However, the notation in
(38) is much better suited for our proof.

45

0 0
0 0

0 0
0 0 0

𝐴 = 𝑈 Σ 𝑉𝑇
𝑚 × 𝑛 𝑚 ×𝑚 𝑚 × 𝑛 𝑛 × 𝑛

Figure 8: Visualisation of SVD. The hatched region corresponds to U⊥ in our proof.

Proof. (when A has full rank). Without loss of generality, we will assume that m ≥ n.
This because if we had m < n, then it would suffice to find an SVD for AT instead of A.

Since ATA is symmetric, it admits an eigenvalue decomposition:

ATA = V ΛV T,

where V is orthogonal.

Since A is assumed to have full rank, the null space of A is {0}. Therefore, for an
eigenvector x⃗ and eigenvalue λ of ATA, we have Ax⃗ ̸= 0 and

∥Ax⃗∥2
2 = (Ax⃗)T(Ax⃗) = x⃗TATAx⃗ = λ∥x⃗∥2

2 ,

which implies that
λ = ∥Ax⃗∥2

2
∥x⃗∥2

2
> 0.

Hence, the diagonal of Λ must be positive – so we can write it as Λ = Σ2 where Σ
is a positive diagonal matrix. Therefore, Σ−1 exists and we can define the matrix
U⊤ := AV Σ−1. This has orthogonal columns as

UT
⊤U⊤ = Σ−1V T(ATA)V Σ−1 = Σ−1(V TV)Λ(V TV)Σ−1 = I.

Since the n columns of U⊤ form an orthogonal basis for a subspace of Rm, we can use
the Gram-Schmidt procedure to extend them to an orthogonal basis of Rm. Therefore,
we can construct a matrix U⊥ ∈ Rm×(m−n) whose columns are these additional basis
vectors.

We can now define the orthogonal matrix U :=
[
U⊤ U⊥

]
and obtain the result as

U⊤ΣV T = (AV Σ−1)ΣV T = A.

46

Remark. The matrix U⊥ is often called the orthogonal complement of U⊤. However,
since it is multiplied by zeroes in the SVD (37), it has very little importance compared
to U⊤.

Finally, for the terminology “Singular Value Decomposition” to make sense, we will
define the “Singular Values” of a matrix.

Definition 5.10 (Singular values and vectors). In Theorem 5.9, {σi} are called the
singular values of A. The columns of U =

[
u⃗1 · · · u⃗m

]
are called the left singular

vectors and the columns of V =
[
v⃗1 · · · v⃗n

]
are called the right singular vectors.

Unsurprisingly, singular values are closely related to eigenvalues.

Theorem 5.10. Let {σi} denote the singular values of A ∈ Rm×n. Then

σi =
√

λi

where {λi} are the eigenvalues of ATA with |λ1| ≥ |λ2| ≥ · · · |λn| ≥ 0. Furthermore,

• {λi} are the eigenvalues of AAT,

• V =
[
v⃗1 · · · v⃗n

]
are the eigenvectors of ATA,

• U =
[
u⃗1 · · · u⃗m

]
are the eigenvectors of AAT.

Proof. From the Singular Value Decomposition (38), we have

A = UΣV T.

Therefore, the matrix ATA is

ATA = (UΣV T)T(UΣV T) = V Σ UTU︸ ︷︷ ︸
= Im

ΣV T = V Σ2V T,

which is precisely the eigenvalue decomposition of ATA. Therefore Σ2 are the eigenvalues
of AAT and U gives the eigenvectors. An identical argument applies to AAT and gives
the result.

The SVD tells us that any matrix can be written as orthogonal-diagonal-orthogonal.
Roughly speaking, orthogonal matrices can be thought of as rotations or reflection, so
the SVD says the action of a matrix can be thought of as a rotation/reflection followed
by magnification (or shrinkage), followed by another rotation/reflection.

With this intuition, we would expect that the rank of A corresponds to rank of Σ.

Theorem 5.11. The rank of A is equal to the number of positive singular values, σi > 0.

47

Proof. We first note that, if ATAx⃗ = 0 where x⃗ ∈ Rn, then

∥Ax⃗∥2
2 = (Ax⃗)T(Ax⃗) = x⃗T(ATAx⃗) = 0.

Therefore ATA and A have the same null space. So by the rank-nullity theorem, they
must have the same rank. From the SVD, we have

ATA = (V ΣTUT)(UΣV T) = V (ΣTΣ)V T.

The result now follows as the rank of the square matrix ATA equals the number of
non-zero eigenvalues in ΣTΣ.

Having covered quite a bit of theory, let’s consider an example.

Example 5.14. We would like to compute the SVD of the matrix A =


−1 −2
2 1
1 0
0 1

.

Then the Gram Matrix is ATA =
[
−1 2 1 0
−2 1 0 1

] 
−1 −2
2 1
1 0
0 1

 =
[
6 4
4 6

]
.

We can compute its eigenvalues as 2 and 10 using the characteristic polynomial

det
([

6 − λ 4
4 6 − λ

])
= 0 ⇔ (6 − λ)2 = 16.

Solving each eigenvalue problem yields the following eigenvector matrix,

V = 1√
2

[
1 −1
1 1

]
.

Therefore ATA admits the eigenvalue decomposition,

ATA = V Σ2V T, where Σ2 =
[
10 0
0 2

]
.

48

Hence U⊤ can be computed as

U⊤ = AV Σ−1 =


−1 −2
2 1
1 0
0 1

 1√
2

[
1 −1
1 1

] [1√
10 0
0 1√

2

]

=


−1 −2
2 1
1 0
0 1


[1√

20 −1
2

1√
20

1
2

]

=


− 3√

20 −1
2

3√
20 −1

2
1√
20 −1

2
1√
20

1
2

 .

Therefore, we have the following singular value decomposition for A,

−1 −2
2 1
1 0
0 1

 =


− 3√

20 −1
2

3√
20 −1

2
1√
20 −1

2
1√
20

1
2

∣∣∣∣∣∣∣∣∣∣
U⊥



√

10 0
0

√
2

0 0
0 0


[1√

2
1√
2

− 1√
2

1√
2

]
,

where the matrix U⊥ can be computed through the Gram-Schmidt procedure.

5.5.3 Low-rank approximation using the SVD

From the SVD (37) and Theorem 5.11, we obtain the following important alternative
formula:

A =
rank(A)∑

i=1
σiu⃗iv⃗

T
i , (39)

where {σi} are the singular values, U =
[
u⃗1 u⃗2 · · · u⃗n

]
, V =

[
v⃗1 v⃗2 · · · v⃗n

]
and

rank(A) is precisely the number of non-zero σi.

Letting R denote the rank of A, we can visualise (39) as

A =



∗
∗
...
∗
∗


[
∗ ∗ · · · ∗ ∗

]

︸ ︷︷ ︸
σ1u⃗1v⃗T

1

+



∗
∗
...
∗
∗


[
∗ ∗ · · · ∗ ∗

]

︸ ︷︷ ︸
σ2u⃗2v⃗T

2

+ · · · +



∗
∗
...
∗
∗


[
∗ ∗ · · · ∗ ∗

]

︸ ︷︷ ︸
σRu⃗Rv⃗T

R

.

49

Equation (39) reveals something quite interesting. It is possible to store the m × n
matrix A using only rank(A)(m + n + 1) numbers (since each triple (σi, u⃗i, v⃗i) requires
m + n + 1 numbers). As previously discussed, large matrices are ubiquitous throughout
the sciences. So there is great interest in low-rank matrix approximation.

Figure 9: Visualisation of the low-rank approximation obtained by truncating SVD.

Definition 5.11 (Low-rank matrix approximation). Given a matrix A ∈ Rm×n with
SVD (39), we define a rank-r approximation Ar as

Ar :=
r∑

i=1
σiu⃗iv⃗

T
i . (40)

Alternatively, we can write Ar as

Ar = UrΣrV
T

r ,

where Ur =
[
u⃗1 u⃗2 · · · u⃗r

]
∈ Rm×r, Vr =

[
v⃗1 v⃗2 · · · v⃗r

]
∈ Rn×r and Σr =

diag(σ1, · · · , σr).

Furthermore, due to the remarkable properties of SVD, matrix approximation via (40)
is actually optimal in the following sense:

Theorem 5.12 (Optimality of matrix approximation using SVD). For any A ∈ Rm×n

with singular values σ1(A) ≥ σ2(A) ≥ · · · ≥ σmin(m,n)(A) ≥ 0, and any non-negative
integer r < min(m, n), we have

∥A − Ar∥2 = σr+1(A) = min
rank(B)≤r

∥A − B∥2 , (41)

where Ar is the rank-r approximation given by (40).

Proof. Not covered.

50

From this theorem, we can make a few observations:

• A good approximation A ≈ Ar is achieved if and only if σr+1 ≪ σ1.

• Optimality actually holds under any norm that is invariant under multiplication
by orthogonal matrices. We will not prove this optimality, but we can see that
the Euclidean norm is invariant as

∥V x⃗∥2
2 = (V x⃗)T(V x⃗) = x⃗T V TV︸ ︷︷ ︸

= I

x⃗ = ∥x⃗∥2
2 , (42)

for any orthogonal matrix V ∈ Rn×n and vector x⃗ ∈ Rn. In particular, the above
optimality theorem also holds under the Frobenius norm.

Definition 5.12. The Frobenius norm of a matrix A ∈ Rm×n is

∥A∥F :=
√√√√ m∑

i=1

n∑
j=1

|aij|2 =
√

tr
(
ATA

)
.

• A prominent application of low-rank approximation is PCA (Principal Component
Analysis), which is often used in data science.

• By viewing a grayscale image as a matrix A ∈ Rm×n, we can compute its SVD
and visualise the resulting low-rank approximations. Whilst this is not the state
of the art for image compression, it clearly demonstrates the effectiveness of SVD.

Figure 10: Image compression by low-rank approximation via the truncated SVD.

Although the proof of Theorem 5.12 is not covered, we will prove the following corollary.

51

Theorem 5.13. Let A ∈ Rm×n. Then the first singular value of A is

σ1 = ∥A∥2 . (43)

Proof. Without loss of generality, suppose m ≥ n.

Let x⃗ ∈ Rn be such that ∥x∥2 = 1 and define y⃗ := V Tx⃗. Then, since the Euclidean norm
is invariant to multiplication by orthogonal matrices (see (42)), we have ∥y∥2 = 1 and

∥Ax⃗∥2 = ∥UΣ̃V Tx⃗∥2 = ∥UΣ̃y⃗∥2 = ∥Σ̃y∥2 ,

where Σ̃ :=
[
Σ
0

]
. Since Σ is an n × n diagonal matrix, this gives

∥Ax⃗∥2 =
√√√√ n∑

i=1
σ2

i y2
i ≤

√√√√ n∑
i=1

σ2
1y2

i = σ1∥y⃗∥2 = σ1∥x⃗∥2 .

Therefore, ∥A∥2 ≤ σ1. On the other hand, taking x⃗ = v⃗1 (the leading right singular
vector), we obtain V Tv⃗1 = e1 and thus ∥Av⃗1∥2 = σ1.

Figure 11: A geometric illustration for the SVD of a square matrix. In particular, we
see that the leading singular value is the major semi-axis of the ellipse.

Finally, to conclude this subsection, we will discuss one of the most commonly used
applications of SVD – dimensionality reduction.

That is, given data X = {x⃗1, · · · , x⃗n} ⊂ Rm, we aim to compress it into a lower-
dimensional space Rr with r < m (ideally r ≪ m). Perhaps the most common way to
do this is to find a matrix W ∈ Rr×m that can reduce any x⃗ ∈ X to y⃗ := Wx⃗ ∈ Rr.
Many computations can then be performed with the reduced vectors y⃗ directly. However,
to recover (or more precisely, approximate) the original data z⃗ ≈ x⃗, we need another
matrix U ∈ Rm×r such that z⃗ = Uy⃗.

52

Definition 5.13. Given a dataset X = {x⃗1, · · · , x⃗n} ⊂ Rm, the Principal Component
Analysis (PCA) finds a compression matrix W∗ ∈ Rr×m and a recovery matrix
U∗ ∈ Rm×r such that the mean squared error betweeen the recovered and original vectors
in X is minimal,

W∗, U∗ = arg min
W ∈Rr×m, U∈Rm×r

(
1
n

n∑
i=1

∥∥∥x⃗i − UWx⃗i

∥∥∥2

2

)
. (44)

The columns of U∗ are called Principal Components.

Using the SVD, it is remarkably easy to solve the optimisation problem (44).

Theorem 5.14. The PCA problem (44) can be solved by taking U∗ as the truncated
matrix Ur =

[
u⃗1 u⃗2 · · · u⃗r

]
∈ Rm×r from the SVD of X and W∗ = UT

∗ .

Proof. (non-examinable)

Let y⃗ := Wx⃗ ∈ Rr and Y =
[
y⃗1 · · · y⃗n

]
∈ Rr×n, then

n∑
i=1

∥∥∥x⃗i − UWx⃗i

∥∥∥2

2
=

n∑
i=1

∥∥∥x⃗i − Uy⃗i

∥∥∥2

2

=
n∑

i=1

(
x⃗i − Uy⃗i

)T(
x⃗i − Uy⃗i

)
= tr

((
X − UY

)T(
X − UY

))
=
∥∥∥X − UY

∥∥∥2

F
.

As span({y⃗1, · · · , y⃗n}) is a subspace of Rr, it is as most r-dimensional. This means that
{Uy⃗ : y⃗ ∈ span({y⃗1, · · · , y⃗n})} must also be at most r-dimensional. However, since this
is the column space of UY , it follows that rank(UY) ≤ r.

So by the optimality of SVD, Theorem 5.12 (under the Frobenius norm), we see that
the mean-squared error (44) is minimised when

UY = Xr , (45)

with Xr denoting the rank-r approximation of X given by

Xr = UrΣrV
T

r ,

where Ur =
[
u⃗1 u⃗2 · · · u⃗r

]
∈ Rm×r, Vr =

[
v⃗1 v⃗2 · · · v⃗r

]
∈ Rn×r and Σr =

diag(σ1, · · · , σr) are obtained from the SVD of X.

53

We claim that (45) is achieved by setting U = Ur and W = UT
r . This can be shown by

direct calculation,

UWX = UrU
T
r X

= UrU
T
r Xr + UrU

T
r (X − Xr)

= Ur UT
r Ur︸ ︷︷ ︸

= Im

ΣrV
T

r + UrU
T
r (X − Xr)

= Xr + UrU
T
r (X − Xr).

Using the SVD formula (40) for X and Xr, we can express their difference X − Xr as

X − Xr =
∑

i ≥ r+1
σiu⃗iv⃗

T
i .

Therefore, for any j ≤ r, left multiplying by u⃗T
j gives

u⃗T
j (X − Xr) =

∑
i ≥ r+1

σi

(
u⃗T

j u⃗i︸ ︷︷ ︸
= 0

)
v⃗T

i = 0,

as u⃗j and u⃗i are orthogonal. Hence UT
r (X − Xr) = 0 and

UW = Xr + UrU
T
r (X − Xr) = Xr ,

as required.

Remark. From Theorem 5.14, we see that the process of solving a PCA problem is
exactly the same as obtaining the matrix U in the SVD. We note that if X = UΣV T

then
XXT =

(
UΣ̃V T

)(
UΣ̃V T

)T
= UΣ̃

(
V TV︸ ︷︷ ︸
= In

)
Σ̃TUT = UΣ2UT,

where Σ̃ :=
[
Σ
0

]
.

This is exactly the same as the symmetric eigenvalue decomposition given by Theorem
5.8. Therefore, to solve a PCA problem we can obtain the columns of Ur as the
eigenvectors u⃗1, u⃗2, · · · , u⃗r of XXT corresponding to its largest r eigenvalues
σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0.

To show that this gives us a practical way of computing PCA by hand, we shall present
another example.

Example 5.15. Consider the following vectors in R2,

x⃗1 =
[

1
−1

]
, x⃗2 =

[
−1
1

]
, x⃗3 =

[
2
2

]
,

54

and suppose that we would like to reduce the dimension of the points {x⃗i} to one.

Just as for SVD, we compute the (unnormalized) covariance matrix XXT:

A =
3∑

i=1
x⃗ix⃗

⊤
i =

([
1

−1

] [
1 −1

]
+
[
−1
1

] [
−1 1

]
+
[
2
2

] [
2 2

])

=
([

1 −1
−1 1

]
+
[

1 −1
−1 1

]
+
[
4 4
4 4

])

=
[
6 2
2 6

]
,

Then the eigenvalues of A can be obtained by solving

det
([

6 − λ 2
2 6 − λ

])
= (6 − λ)2 − 4 = 0 ⇔ λ = 8 or 4.

Since [
6 2
2 6

] [
1
1

]
= 8

[
1
1

]
,

it follows that the leading eigenvector and the compression matrix are

W = U⊤ =
√

2
2
[
1 1

]
.

Therefore, the compressed data points (y⃗ = Wx⃗) are

y⃗1 = 0, y⃗2 = 0, y⃗3 = 2
√

2,

and the recovered data (z⃗ = Uy⃗) is

z⃗1 =
[
0
0

]
, z⃗2 =

[
0
0

]
, z⃗3 =

[
2
2

]
.

As a nice exercise, you could plot the original data points (x⃗1, x⃗2, x⃗3) are consider why
the PCA would map them to (z⃗1, z⃗2, z⃗3) .

55

Figure 12: The principal components are the directions which explain the variance of
the data.

6 Solution of Initial-Value Problems (IVPs)
An IVP in standard form is a system of N differential equations:

dy⃗

dt
= f(y⃗, t), t ≥ 0, (46)

where f : RN+1 → RN is a given function and y⃗(t) ∈ RN is the solution (for t > 0), to
be found subject to initial conditions of the form:

y⃗(0) = y⃗0, (47)

with initial data y0 ∈ RN given.

Example 6.1 (N = 1). Let f(y, t) = y2 and y0 = 1. Then

dy

dt
= y2, subject to y(0) = 1.

It is easy to see that the exact solution is y(t) = 1/(1 − t). (Please check!) Usually the
exact solution is not so easy to find.

Not all problems are presented as in Example 6.1.

56

Example 6.2. A simple pendulum is released from rest at angle α. The angle θ = θ(t)
of the pendulum satisfies the second-order equation:

d2θ

dt2 = g

a
sin θ, (48)

with g and a constants, subject to two initial conditions:

θ(0) = α,
dθ

dt
(0) = 0.

To put these equations in standard form, introduce the new variable ϕ defined by
ϕ = dθ/dt.

Then (48) becomes

dθ

dt
= ϕ,

dϕ

dt
= g

a
sin θ.

which has the form (46) with

y⃗ =
[
θ
ϕ

]
and f(y⃗, t) =

[
ϕ

g
a

sin θ

]
.

6.1 Euler’s method
Given Examples 6.1 and 6.2, suppose we want to find y⃗(t) for t = h for some small h.
Integrating each side of (46) over [0, h] gives

y⃗(h) − y⃗(0) =
∫ h

0

dy⃗

dt
dt =

∫ h

0
f(y⃗(t), t) dt (49)

The integral on the right-hand side is still unknown, but we can approximate it, for
example, by replacing the integrand by its value at t = 0 (which will be okay if h is
small). This yields

y⃗(h) ≈ y⃗(0) + hf(y⃗(0), 0) = y⃗0 + hf(y⃗0, 0). (50)

Everything on the right-hand side is known so we can compute an approximation of
y⃗(h). Then y⃗(2h) can be approximated by taking another step, and so on. This is
Euler’s Method, which computes a sequence of approximations Y⃗j to y⃗(tj), where
tj = jh, j = 1, 2, . . . by

Y⃗0 = y⃗0

Y⃗j = Y⃗j−1 + hf(Y⃗j−1, tj−1), for all j ≥ 1.
(51)

57

Example 6.3. Solve
dy

dt
= y2, y(0) = 1 (52)

using Euler’s method with h = 0.1; that is,

Y0 = y0 = 1
Y1 = Y0 + hf(Y0) = 1 + 0.1(12) = 1.1
Y2 = Y1 + hf(Y1) = 1.1 + 0.1(1.1)2 = 1.221.

Using the program,we approximate the solution of (52) at the time T = 1/2 for various
h. The number of steps taken in Euler’s method is then n = T/h. Since we know
y(1/2) = 2 in this case (see (46)), we can find the error exactly.

Results:

n = T/h h | y(1/2) − Yn | Ratio
4 1/8 0.2338 0.59
8 1/16 0.1389 0.55
16 1/32 0.07696 0.53
32 1/64 0.04073

The ratios for the errors approach 1/2, which suggests that |Yn − y(t)| ∼= O(h) as h → 0.
This is what we prove in the next subsection.

6.2 Convergence of one-step methods
We now restrict to the simplified version of (46) with N = 1 and f(y, t) = f(y):

dy

dt
= f(y) (53)

subject to the initial condition
y(0) = y0. (54)

We shall consider “one step” methods of the form :

Y0 = y0

Yj = Yj−1 + hFh(Yj−1), for all j ≥ 1 (55)

where Fh is a function to be specified.

An example is Euler’s method, where Fh ≡ f . The error at the jth step is defined to be

ej = y(tj) − Yj where tj = jh.

58

Definition 6.1. If y solves (53),(54), the local truncation error for (55) is defined
to be

τj = y(tj) − y(tj−1)
h

− Fh(y(tj−1)) , where tj = jh.

(i.e., hτj is the discrepancy when the true solution is substituted into (55)).

The convergence analysis proceeds by (i) bounding the error in the computed solutions
Yj in terms of the local truncation errors and (ii) estimating the local truncation error
using Taylor’s theorem.

Definition 6.2. A continuous function g : R → R is called Lipschitz continuous
with Lipschitz constant L > 0 if

| g(Y) − g(Z) | ≤ L |Y − Z| for all Y, Z ∈ R.

Theorem 6.1. Suppose Fh is Lipschitz continuous with Lipschitz constant L independent
of h. Then the error ej in (55) satisfies

|ej| ≤ (1 + hL)|ej−1| + h|τj|, j = 1, 2, 3, (56)

Moreover, for all fixed T and all n ∈ N satisfying nh ≤ T ,

|en| ≤ exp(TL) − 1
L

max
1≤j≤n

|τj|.

Proof. By definition of τj,

y(tj) = y(tj−1) + hFh(y(tj−1)) + hτj . (57)

So with ej = y(tj) − Yj, we have by subtracting (55) from (57):

ej = ej−1 + h
(
Fh(y(tj−1)) − Fh(Yj−1)

)
+ hτj.

By the triangle inequality and the Lipschitz continuity of Fh,

|ej| ≤ |ej−1| + h|Fh(y(tj−1)) − Fh(Yj−1)| + h|τj|
≤ (1 + hL)|ej−1| + h|τj|.

We see that (56) holds.

Now we shall prove by induction that, for all n ≥ 1,

|en| ≤ h
n−1∑
j=0

(1 + hL)j |τn−j|. (58)

59

Clearly (58) holds for n = 1, since the first equation in (55) implies |e0| = 0 and (56)
then gives |e1| ≤ h|τ1|. Now if (58) holds for some n, then (56) implies

|en+1| ≤ h
n−1∑
j=0

(1 + hL)j+1 |τn−j| + h|τn+1|

= h
n∑

j=1
(1 + hL)j |τn+1−j| + h|τn+1|

= h
n∑

j=0
(1 + hL)j |τn+1−j|.

Hence, (58) holds for n + 1, and for all n by induction.

Finally, from (58) we have, since
n−1∑
j=0

qj = qn − 1
q − 1 ,

|en| ≤(1 + hL)n − 1
L

max
1≤j≤n

|τj| = exp(nhL) − 1
L

max
1≤j≤n

|τj|.

since 1 + x ≤ exp x , for all x ≥ 0. And so the result follows for all nh ≤ T .

Remark. This theorem shows that the error in the approximation to the solution
computed by (55) at the point tn = nh will approach 0 if all the local truncation errors
τj, j = 1, . . . , n, approach 0 , as h → 0.

Normally the local truncation error is estimated by applying Taylor’s theorem.

Example 6.4. Euler’s method is (55) with Fh(Y) := f(Y). If we assume that f is
Lipschitz continuous, then Theorem 6.1 applies and to show convergence we have to
estimate τj,.

To do this we write (using the definition of τj):

τj = y(tj) − y(tj−1)
h

− f(y(tj−1)) = y(tj−1 + h) − y(tj−1)
h

− f(y(tj−1))

which we can expand via Taylor’s Theorem, with ξj ∈ (tj−1, tj), such that

τj =

(
y(tj−1) + h

dy

dt
(tj−1) + h2

2
d2y

dt2 (ξj) − y(tj−1)
)

h
− f(y(tj−1))

=
[

dy

dt
(tj−1) − f(y(tj−1))

]
+ h

2
d2y

dt2 (ξj).

60

Now, since y(t) is the solution of (53), we have, for all j = 1, · · · , n:

|τj| ≤ 1
2 max

t∈[0,T]

∣∣∣∣∣d2y

dt2 (t)
∣∣∣∣∣h. (59)

Hence if ∣∣∣∣∣d2y

dt2 (t)
∣∣∣∣∣ is bounded for t ∈ R, (60)

then Theorem 6.1 implies that
|en| ≤ C(T)h, (61)

where C(T) is a constant depending on T ; and, for fixed T , we have convergence (i.e.,
en → 0 as h → 0).

Often one just assumes (60) and then concludes (61). To show (60) rigorously, we need
to make some assumptions on the given function f . In particular, assume that

|f(x)| ≤ M, x ∈ R, (62)

and |f ′(x)| ≤ L, x ∈ R. (63)

Then f is Lipschitz continuous with Lipschitz constant L, and by (53) and the chain
rule, ∣∣∣∣∣d2y

dt2 (t)
∣∣∣∣∣ =

∣∣∣∣∣ d

dt
f(y(t))

∣∣∣∣∣ =
∣∣∣∣∣f ′(y(t))dy

dt
(t)
∣∣∣∣∣ = |f ′(y(t))||f(y(t))| ≤ LM.

6.3 Higher-order methods
We saw in (61) that Euler’s Method converges with O(h). This is relatively slow.
Higher-order methods can be found by employing higher-order quadrature in (49). For
simplicity, restrict to the case the case N = 1 and f(y, t) = f(y) again: Then (49) is

y(h) − y(0) =
∫ h

0
f(y(t)) dt.

Instead of approximating the right-hand side by the one-point quadrature rule at 0,
consider using instead the trapezium rule, to obtain

y(h) ≈ y(0) + h

2

(
f(y(0)) + f(y(h))

)
. (64)

This motivates the Crank–Nicholson (or Trapezoidal) Method for solving (46):

Y0 = y0

Yj = Yj−1 + h

2

(
f(Yj−1) + f(Yj)

)
, for all j ≥ 1.

(65)

61

This method has a big disadvantage, since to find Yj from Yj−1 in (65), we have to solve
a (possibly nonlinear) equation

Yj − h

2f(Yj) = Yj−1 + h

2f(Yj−1) .

If there are N differential equations, then there are N (possibly nonlinear) equations
to solve at each timestep. Despite this extra cost such “implicit” methods are often
preferred because of their good stability properties. (Stability is an advanced topic.)

To estimate the local truncation error for (65), write the method as

Yj − Yj−1

h
= 1

2

(
f(Yj−1) + f(Yj)

)
.

Then using (53) and applying Taylor’s theorem to both y and dy/dt we get:

τj = y(tj) − y(tj−1)
h

− 1
2

(
f(y(tj−1)) + f(y(tj))

)

= dy

dt
(tj−1) + h

2
d2y

dt2 (tj−1) + h2

6
d3y

dt3 (tj−1) − 1
2

(
dy

dt
(tj−1) + dy

dt
(tj)

)
+ O(h3)

=
(

dy

dt
+ h

2
d2y

dt2 + h2

6
d3y

dt3 − dy

dt
− h

2
d2y

dt2 − h2

4
d3y

dt3

)
(tj−1) + O(h3)

= − 1
12

d3y

dt3 (tj−1) h2 + O(h3),

Hence, provided y has three bounded derivatives, |τj| = O(h2). Note that

d3y

dt3 = d2

dt2 f(y) = d

dt

(
f ′(y)y′

)
= d

dt

(
f ′(y)f(y)

)
= f ′′(y)(f(y))2 + (f ′(y))2f(y) .

Theorem 6.2. Suppose f is Lipschitz continuous with Lipschitz constant L independent
of h. If hL ≤ 1, then the error ej = y(tj) − Yj for the Crank–Nicholson method in (65)
satisfies

|ej| ≤ (1 + hL)2 |ej−1| + h(1 + hL) |τj|, j = 1, 2, 3, (66)
Moreover, for all fixed T and all n ∈ N satisfying nh ≤ T ,

|en| ≤ exp(2TL) − 1
L

max
1≤j≤n

|τj|.

Proof. From (65),
Yj = Yj−1 + h

2

(
f(Yj−1) + f(Yj)

)

62

and by definition of the trunctation error

y(tj) = y(tj−1) + h

2

(
f(y(tj−1)) + f(y(tj))

)
+ hτj .

Hence, subtracting

|ej| =
∣∣∣∣∣ej−1 + h

2

(
f(y(tj−1)) − f(Yj−1)

)
+ h

2

(
f(y(tj)) − f(Yj)

)
+ hτj

∣∣∣∣∣
and, using the triangle inequality and Lipschitz continuity of f , we have

|ej| ≤ |ej−1| + hL

2 |ej−1| + hL

2 |ej| + h|τj|,

and rearrange as follows,(
1 − hL

2

)
|ej| ≤

(
1 + hL

2

)
|ej−1| + h|τj|

⇒ |ej| ≤
(

1 − hL

2

)−1((
1 + hL

2

)
|ej−1| + h|τj|

)
.

We note that, for any 0 ≤ x ≤ 1
2 ,

(1 − x)−1 ≤ 1 + 2x,

and thus for hL ≤ 1, (
1 − hL

2

)−1

≤ 1 + hL.

Therefore
|ej| ≤ (1 + hL)2|ej−1| + h(1 + hL) |τj|.

The rest of the proof is Problem E8.3.

6.3.1 Higher-order explicit methods

There are ways of achieving higher order without using implicitness. Assume that we
have computed an approximation Yj−1 to y(tj−1). The improved Euler method uses first
the standard Euler method to get an approximation Ŷj to y(tj) and then the trapezoidal
rule to improve it:

Ŷj = Yj−1 + hf(Yj−1) “prediction" (67)

Yj = Yj−1 + h

2

(
f(Yj−1) + f(Ŷj)

)
“correction" (68)

63

This method fits into the framework of Theorem 6.1 because it can be written:

Yj = Yj−1 + h

2

(
f(Yj−1) + f

(
Yj−1 + hf(Yj−1)

))
,

which is of the form (55) with Fh(Y) := 1
2f(Y) + 1

2f
(
Y + hf(Y)

)
. The truncation error

is
τj = y(tj) − y(tj−1)

h
− 1

2
(
f(y(tj−1)) + f

(
y(tj−1) + hf(y(tj−1))

)
,

and it turns out that ∥τj∥ = O(h2) for sufficiently smooth f (see Problem E8.2).

Moreover if f is Lipschitz then so is Fh, since

|Fh(Y) − Fh(Z)| ≤ 1
2 |f(Y) − f(Z)| + 1

2 |f(Y + hf(Y)) − f(Z + hf(Z))|

≤ L

2 |Y − Z| + L

2 |(Y + hf(Y)) − (Z + hf(Z))|

≤ L|Y − Z| + hL

2 |f(Y) − f(Z)| ≤
(

L + 1
2hL2

)
|Y − Z|.

So under these conditions, Theorem 6.1 implies that the improved Euler method
converges with order O(h2), at the small additional cost of an extra evaluation of f at
each time step.

Higher-order methods can be built up using more evaluations of f . In general these
methods are called Runge-Kutta methods.

Example 6.5. Let

K1 = f(Y0),

K2 = f
(

Y0 + h

2K1

)
,

K3 = f
(

Y0 + h

2K2

)
,

K4 = f
(
Y0 + hK3

)
,

Y1 = Y0 + h

6
(
K1 + 2K2 + 2K3 + K4

)
.


This is a fourth order Runge-Kutta method (requires some analysis).

64

	What is numerical analysis?
	Interpolation
	Numerical integration
	Solving nonlinear equations
	Numerical linear algebra
	Solution of Initial-Value Problems (IVPs)

